Displaying all 11 publications

Abstract:
Sort:
  1. Mohd Amirul Syafiq Mohd Yunos, Zainal Abidin Talib, Wan Mahmood Mat Yunus, Liew, Josephine Ying Chyi, Paulus, Wilfred Sylvester
    MyJurnal
    Semiconductor thin films Copper Tin Selenide, Cu2SnSe3, a potential compound for solar cell applications or semiconductor radiation detector were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen N2, for 2 hours in a temperature range from 100˚C to 500˚C. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from Reitveld refinement show that the samples composed of Cu2SnSe3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain.
  2. Zainal Abidin Talib, Liew, Josephine Ying Chyi, Zulkarnain Zainal, Mahmood Mat Yunus, W., Lim, Kean Pah, Wan M. Daud, Wan Yusoff, et al.
    MyJurnal
    This studies are directed towards measuring the electrical conductivity of the (CuSe)1-xSex metal chalcogenide semi-conductor composites, with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8,1.0) in bulk form. The electrical conductivity measurement was carried out at room temperature, using the parallel plate technique. The (CuSe)1-xSex composites were prepared using solid state reaction, by varying the ratio of CuSe:Se, in the reaction mixture. The electrical conductivity of (CuSe)1-xSex was determined to be in the range of 1.17 x 10-8 to 1.02 x 10-1 S/cm. The finding indicated that the electrical conductivity value tended to decrease as the concentration of Se increased. The effect of the concentration of Se, on electrical conductivity of (CuSe)1-xSex composites, is discussed in this paper.
  3. Shanmugam SD, Praveena SM, Wahid SA, Liew JYC
    Environ Monit Assess, 2024 Jan 12;196(2):144.
    PMID: 38214797 DOI: 10.1007/s10661-024-12330-w
    Presently, microplastic pollution has emerged as a growing environmental risk around the world. Nevertheless, knowledge of the occurrence and characteristics of microplastics in tropical agricultural soil is limited. This study investigated the pollution of surface soil microplastics in two agricultural farms located at Klang Valley, Malaysia. An extraction method based on density separation by using saturated extraction solution (sodium sulfate, ρ = 2 g cm-3 and sucrose, ρ = 1.59 g cm-3 with a ratio 1:1, v/v) was carried out. The study revealed the mean particle size of soil microplastics with 3260.76 ± 880.38 μm in farm A and 2822.31 ± 408.48 μm in farm B. The dominant types of soil microplastics were fragments and films with major colors of white (59%) and transparent (28%) in farm A, while black (52%) and white (37.6%) in farm B. Representatives of soil microplastics detected polymers of polyvinyl chloride (PVC), high density polyethylene (HDPE), polycarbonate (PC), and polystyrene (PS). The sources of plastic products were black and white plastic pipes, black plastic films for vegetation, fertilizer bottles, plastic water containers and polystyrene storage boxes, and the breakdown processes, contributed to the microplastic pollution in these farms. The outcomes of this study will establish a better understanding of microplastic pollution in tropical agricultural soil in the Southeast Asian region. The findings would be beneficial as supportive reference for the endeavor to reduce microplastic pollution in agricultural soil.
  4. Zaini MS, Liew JYC, Alang Ahmad SA, Mohmad AR, Ahmad Kamarudin M
    ACS Omega, 2020 Dec 08;5(48):30956-30962.
    PMID: 33324803 DOI: 10.1021/acsomega.0c03768
    The existence of surface organic capping ligands on quantum dots (QDs) has limited the potential in QDs emission properties and energy band gap structure alteration as well as the carrier localization. This drawback can be addressed via depositing a thin layer of a semiconductor material on the surface of QDs. Herein, we report on the comparative study for photoluminescent (PL) properties of PbS and PbS/MnS QDs. The carrier localization effect due to the alteration of energy band gap structure and carrier recombination mechanism in the QDs were investigated via PL measurements in a temperature range of 10-300 K with the variation of the excitation power from 10 to 200 mW. For PbS QDs, the gradient of integrated PL intensity (IPL) as a function of excitation power density graph was less than unity. When the MnS shell layer was deposited onto the PbS core, the PL emission exhibited a blue shift, showing dominant carrier recombination. It was also found that the full width half-maximum showed a gradual broadening with the increasing temperature, affirming the electron-phonon interaction.
  5. Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal WMEMM
    PMID: 34333400 DOI: 10.1016/j.saa.2021.120202
    Due to the crucial role of dopamine (DA) in health and peripheral nervous systems, it is particularly important to develop an efficient and accurate sensor to monitor and determine DA concentrations for diagnostic purposes and diseases prevention. Up to now, using surface plasmon resonance (SPR) sensors in DA determination is very limited and its application still at the primary stage. In this work, a simple and ultra-sensitive SPR sensor was constructed for DA detection by preparation of chitosan- graphene quantum dots (CS-GQDs) thin film as the sensing layer. Other SPR measurements were conducted using different sensing layers; GQDs, CS for comparison. The proposed thin films were prepared by spin coating technique. The developed CS-GQDs thin film-based SPR sensor was successfully tested in DA concentration range from 0 fM to 1 pM. The designed SPR sensor showed outstanding performance in detecting DA sensitively (S = 0.011°/fM, R2 = 0.8174) with low detection limit of 1.0 fM has been achieved for the first time. The increased angular shift of SPR dip, narrow full width half maximum of the SPR curves, excellent signal-to-noise ratio and figure of merit, and a binding affinity constant (KA) of 2.962 PM-1 demonstrated the potential of this sensor to detect DA with high accuracy. Overall, it was concluded that the proposed sensor would serve as a valuable tool in clinical diagnostic for the serious neurological disorders. This in turns has a significant socio-economic impact.
  6. Eddin FBK, Fen YW, Liew JYC, Daniyal WMEMM
    Biosensors (Basel), 2022 Dec 03;12(12).
    PMID: 36551091 DOI: 10.3390/bios12121124
    Surface plasmonic sensors have received considerable attention, found extensive applications, and outperformed conventional optical sensors. In this work, biopolymer chitosan (CS) was used to prepare the bilayer structure (CS/Au) of a plasmonic refractive index sensor for dopamine (DA) detection. The sensing characteristics of the developed plasmonic sensor were evaluated. Increasing DA concentrations significantly shifted the SPR dips. The sensor exhibited stability and a refractive index sensitivity of 8.850°/RIU in the linear range 0.1 nM to 1 µM with a detection limit of 0.007 nM and affinity constant of 1.383 × 108 M-1. The refractive index and thickness of the CS/Au structure were measured simultaneously by fitting the obtained experimental findings to theoretical data based on Fresnel equations. The fitting yielded the refractive index values n (1.5350 ± 0.0001) and k (0.0150 ± 0.0001) for the CS layer contacting 0.1 nM of DA, and the thickness, d was (15.00 ± 0.01) nm. Then, both n and d values increased by increasing DA concentrations. In addition, the changes in the FTIR spectrum and the variations in sensor surface roughness and structure obtained by AFM analysis confirmed DA adsorption on the sensing layer. Based on these observations, CS/Au bilayer has enhanced the performance of this plasmonic sensor, which showed promising importance as a simple, low-cost, and reliable platform for DA sensing.
  7. Zaini MS, Liew JYC, Paiman S, Tee TS, Kamarudin MA
    J Fluoresc, 2023 Dec 01.
    PMID: 38038875 DOI: 10.1007/s10895-023-03528-1
    Waste peels are considered an environmental burden and typically disposed in landfills. The aim of this study was to investigate the effects of various solvents on the luminescence properties of carbon quantum dots (CQDs). Watermelon peels were recycled and reuse as precursors for the synthesis of biomass CQDs via a green carbonization method. The colloidal stability, surface charge, and particle size were characterized using zeta potential and dynamic light scattering (DLS). DLS revealed that the size of the CQDs was approximately 5.80 ± 0.4 nm to 9.74 ± 0.8 nm. The high-resolution transmission electron microscopy (HRTEM) results demonstrated a correlation with the DLS results. The optical properties were characterized by photoluminescence (PL) and UV-Visible (UV-Vis) spectroscopy. PL measurements at different excitation wavelengths revealed that the CQDs emissions were influenced by the polarity of the solvents. Meanwhile, the Fourier transform infra-red (FTIR) results showed the presence of oxygen-containing groups on the surface of the CQDs. These results deepen our understanding of the solvent-dependent behavior and colloidal stability of the CQDs.
  8. Shitu IG, Liew JYC, Talib ZA, Baqiah H, Awang Kechik MM, Ahmad Kamarudin M, et al.
    ACS Omega, 2021 Apr 27;6(16):10698-10708.
    PMID: 34056223 DOI: 10.1021/acsomega.1c00148
    A rapid, sustainable, and ecologically sound approach is urgently needed for the production of semiconductor nanomaterials. CuSe nanoparticles (NPs) were synthesized via a microwave-assisted technique using CuCl2·2H2O and Na2SeO3 as the starting materials. The role of the irradiation time was considered as the primary concern to regulate the size and possibly the shape of the synthesized nanoparticles. A range of characterization techniques was used to elucidate the structural and optical properties of the fabricated nanoparticles, which included X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy, field emission scanning electron microscopy, Raman spectroscopy (Raman), UV-Visible diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The mean crystallite size of the CuSe hexagonal (Klockmannite) crystal structure increased from 21.35 to 99.85 nm with the increase in irradiation time. At the same time, the microstrain and dislocation density decreased from 7.90 × 10-4 to 1.560 × 10-4 and 4.68 × 10-2 to 1.00 × 10-2 nm-2, respectively. Three Raman vibrational bands attributed to CuSe NPs have been identified in the Raman spectrum. Irradiation time was also seen to play a critical role in the NP optical band gap during the synthesis. The decrease in the optical band gap from 1.85 to 1.60 eV is attributed to the increase in the crystallite size when the irradiation time was increased. At 400 nm excitation wavelength, a strong orange emission centered at 610 nm was observed from the PL measurement. The PL intensity is found to increase with an increase in irradiation time, which is attributed to the improvement in crystallinity at higher irradiation time. Therefore, the results obtained in this study could be of great benefit in the field of photonics, solar cells, and optoelectronic applications.
  9. Kamal I, Razak HRA, Abdul Karim MK, Mashohor S, Liew JYC, Low YJ, et al.
    Polymers (Basel), 2022 Jan 28;14(3).
    PMID: 35160523 DOI: 10.3390/polym14030535
    Medical imaging phantoms are considered critical in mimicking the properties of human tissue for calibration, training, surgical planning, and simulation purposes. Hence, the stability and accuracy of the imaging phantom play a significant role in diagnostic imaging. This study aimed to evaluate the influence of hydrogen silicone (HS) and water (H2O) on the compression strength, radiation attenuation properties, and computed tomography (CT) number of the blended Polydimethylsiloxane (PDMS) samples, and to verify the best material to simulate kidney tissue. Four samples with different compositions were studied, including samples S1, S2, S3, and S4, which consisted of PDMS 100%, HS/PDMS 20:80, H2O/PDMS 20:80, and HS/H2O/PDMS 20:40:40, respectively. The stability of the samples was assessed using compression testing, and the attenuation properties of sample S2 were evaluated. The effective atomic number of S2 showed a similar pattern to the human kidney tissue at 1.50 × 10-1 to 1 MeV. With the use of a 120 kVp X-ray beam, the CT number quantified for S2, as well measured 40 HU, and had the highest contrast-to-noise ratio (CNR) value. Therefore, the S2 sample formulation exhibited the potential to mimic the human kidney, as it has a similar dynamic and is higher in terms of stability as a medical phantom.
  10. Abubakar S, Tan ST, Liew JYC, Talib ZA, Sivasubramanian R, Vaithilingam CA, et al.
    Nanomaterials (Basel), 2023 Mar 13;13(6).
    PMID: 36985919 DOI: 10.3390/nano13061025
    Zinc oxide (ZnO) nanorods have attracted considerable attention in recent years owing to their piezoelectric properties and potential applications in energy harvesting, sensing, and nanogenerators. Piezoelectric energy harvesting-based nanogenerators have emerged as promising new devices capable of converting mechanical energy into electric energy via nanoscale characterizations such as piezoresponse force microscopy (PFM). This technique was used to study the piezoresponse generated when an electric field was applied to the nanorods using a PFM probe. However, this work focuses on intensive studies that have been reported on the synthesis of ZnO nanostructures with controlled morphologies and their subsequent influence on piezoelectric nanogenerators. It is important to note that the diatomic nature of zinc oxide as a potential solid semiconductor and its electromechanical influence are the two main phenomena that drive the mechanism of any piezoelectric device. The results of our findings confirm that the performance of piezoelectric devices can be significantly improved by controlling the morphology and initial growth conditions of ZnO nanorods, particularly in terms of the magnitude of the piezoelectric coefficient factor (d33). Moreover, from this review, a proposed facile synthesis of ZnO nanorods, suitably produced to improve coupling and switchable polarization in piezoelectric devices, has been reported.
  11. Lee HK, Talib ZA, Mamat Mat Nazira MS, Wang E, Lim HN, Mahdi MA, et al.
    Materials (Basel), 2019 Jul 18;12(14).
    PMID: 31323741 DOI: 10.3390/ma12142295
    The effect of NaOH solution on the formation of nanoparticles has been the subject of ongoing debate in selenium-based material research. In this project, the robust correlation between the mechanistic growth of zinc selenide/graphene oxide (ZnSe/GO) composite and the concentration of NaOH are elucidated. The ZnSe/GO composite was synthesized via microwave-assisted hydrothermal method and the concentrations of NaOH are controlled at 2 M, 3 M, 4 M, 5 M and 6 M. The XRD spectra show that the crystal phases of the samples exhibited a 100% purity of ZnSe when the concentration of sodium hydroxide (NaOH) was set at 4 M. The further increase of NaOH concentration leads to the formation of impurities. This result reflects the essential role of hydroxyl ions in modifying the purity state of ZnSe/GO composite. The optical band gap energy of ZnSe/GO composite also decreased from 2.68 eV to 2.64 eV when the concentration of NaOH increased from 2 M to 4 M. Therefore, it can be concluded that the optimum concentration of NaOH used in synthesizing ZnSe/GO composite is 4 M. This project provides an alternative green method in the formation of a high purity ZnSe/GO composite.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links