MAIN BODY: Chloroplast transformation is an alternative and better genetic engineering approach compared to the nuclear transformation that has been widely applied in plant genetic engineering. Chloroplast transformation has exhibited various positive effects as compared to nuclear transformation. This is a more preferred technique by researchers. To carry out chloroplast transformation, the vector design must be performed, and a selectable marker needs to be incorporated before the chloroplast could uptake the construct. The common way of introducing a gene into the host, which is the chloroplast, involves the biolistic, PEG-mediated, carbon nanotubes carriers, UV-laser microbeam, and Agrobacterium-mediated transformation approaches. Apart from discussing the processes involved in introducing the gene into the chloroplast, this review also focuses on the various applications brought about by chloroplast transformation, particularly in the field of agriculture and environmental science.
CONCLUSION: Chloroplast transformation has shown a lot of advantages and proven to be a better alternative compared to nuclear genome transformation. Further studies must be conducted to uncover new knowledge regarding chloroplast transformation as well as to discover its additional applications in the fields of biotechnology.
METHODS: Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords "CRISPR," "gene editing," and "neurodegenerative diseases." Relevant information was collected and critically reviewed.
RESULTS: The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer's disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.
CONCLUSION: The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.
METHODS: The capabilities of callus, shoot, and root formation were evaluated by culturing both explants on Murashige and Skoog (MS) medium supplemented with various PGRs at the concentrations of 0, 1, 3, 5, and 7 mg/L.
RESULTS: Medium supplemented with 3 mg/L indole-3-butyric acid (IBA) showed the optimal callogenesis from both leaf and stem explants with (72.34 ± 19.55)% and (70.40 ± 14.14)% efficacy, respectively. IBA was also found to be the most efficient PGR for root induction. A total of (50.00 ± 7.07)% and (77.78 ± 16.47)% of root formation were obtained from the in vitro stem and leaf explants after being cultured for (26.5 ± 5.0) and (30.0 ± 8.5) d in the medium supplemented with 1 and 3 mg/L of IBA, respectively. Shoot formation was only observed in stem explant, with the maximum percentage of formation ((100.00 ± 0.00)%) that was obtained in 1 mg/L zeatin after (11.0 ± 2.8) d of culture.
CONCLUSIONS: Callus, roots, and shoots can be induced from in vitro leaf and stem explants of L. pumila through the manipulation of types and concentrations of PGRs.
METHODS: The study was initiated with the determination of maximum non-toxic dose (MNTD) of P. ginseng root culture chloroform extract using the MTT assay. The lipopolysaccharides-stimulated BV2 microglia cells were treated with MNTD and ½MNTD of the extract and its anti-neuroinflammatory properties were assessed by measuring the production of nitric oxide (NO) via Griess assay, as well as TNF-α, IL-6 and IL-10 using Quantikine ELISA.
RESULTS: It was found that the MNTD and ½MNTD of the extract did not play a significant role in the production of pro-inflammatory cytokines such as NO, TNF-α and IL-6. However, the MNTD and ½MNTD of chloroform extract significantly increased the anti-inflammatory IL-10 compared to the untreated cells.
CONCLUSION: With this, the chloroform extract of P. ginseng root culture potentially exerts anti-neuroinflammatory properties.