Displaying all 7 publications

Abstract:
Sort:
  1. Siti Farah Nadiah Rusli, Mimi Hani Abu Bakar, Loh Kee Shyuan, Mohd Shahbudin Mastar, Seratul Jemiah Abdul Rani, Mohd Shahbudin Mastar
    Sains Malaysiana, 2018;47:3017-3023.
    Aryl diazonium salts are coupling agents that assist in molecules attachment to interfaces for sensing purposes. Despite
    not being fully explored and not yet widely applicable for cell-based sensors, the high stability of aryl diazonium salt
    formed sensing system is highly favorable in biological applications. Carbon-based electrodes are the most commonly
    used in aryl diazonium modification due to its post grafting stable C-C bond formation. Here, salt bridge based microbial
    fuel cells (MFCs) were used to study on the effect of aryl diazonium modification on the anode graphite fibre brush. Aryl
    diazonium salts were in situ generated by the diazonation of p-phenylenediamine with NaNO2 in HCl solution. The
    electrochemical performance of the aryl diazonium modified graphite brush MFC was measured and compared with the
    unmodified graphite brush MFC. The power output of the modified graphite brush bioanode was higher (8.33 W/m3
    )
    than the unmodified graphite brush (7.60 W/m3
    ) after 20 days of operation with ferricyanide as the catholyte. After 70
    days of operation using phosphate buffer solution as the catholyte, the Pmax of modified brush was three times higher
    (0.06 W/m3
    ) than of the unmodified brush (0.02 W/m3
    ), which indicates an enhanced binding towards the substrate that
    facilitates a better electron transfer between the microbial and electrode surface.
  2. Shuhib Mamat, Mohamad Faizzi, Mohd Sukor Su’ait, Norasikin Ahmad Ludin, Kamaruzzaman Sopian, Nurul Akmaliah Dzulkurnain, et al.
    Sains Malaysiana, 2018;47:2667-2676.
    Kajian terhadap elektrolit polimer berasaskan 49% poli(metil metakrilat) cangkukan getah asli (MG49) dengan
    natrium iodida (NaI) dalam aplikasi sel suria terpeka pewarna (DSSC) telah dijalankan. Kesan kepekatan garam
    ke atas sifat elektrokimia, morfologi, kimia dan kehabluran MG49-NaI telah dianalisis menggunakan spektroskopi
    impedan elektrokimia (EIS), mikroskopi imbasan elektron (SEM), spektroskopi inframerah transformasi Fourier (FTIR)
    dan pembelauan sinar-X (XRD). Morfologi keratan rentas menunjukkan struktur membran berliang mikro dan homogen.
    Nilai kekonduksian ion tertinggi pada suhu bilik bagi membran elektrolit polimer MG49-NaI pada penambahan 30 %
    bt. garam NaI adalah 8.86 × 10-5 S cm-1. Analisis inframerah menunjukkan interaksi antara atom oksigen dengan ion
    natrium berlaku pada kumpulan berfungsi eter (C–O–C) dan karbonil (C=O). Sifat kehabluran MG49-NaI polimer
    elektrolit didapati berkurang dengan peningkatan kepekatan garam. Analisis kronoamperometri memberikan nilai
    nombor pindahan ion (tion) sebanyak 0.92 membuktikan elektrolit polimer MG49-NaI (30 % bt.) adalah pengkonduksi
    jenis ion. Ujian prestasi DSSC keadaan pepejal bagi FTO/TiO2
    -N719/MG49-NaI (30 % bt.)/I2
    /Pt sampel telah memberikan
    keputusan kecekapan setinggi 0.26% dengan prestasi fotovoltaik, Jsc, Voc dan ff masing-masing adalah 1.30 mA cm-2, 0.56
    V dan 34.91. Membran dalam keadaan pepejal-kuasi atau separa pepejal memberikan nilai kecekapan 3.48 % dengan
    nilai Voc = 0.75 V, Jsc = 12.71 mA cm-2 dan FF = 37.70.
  3. Loh KS, Lee YH, Musa A, Salmah AA, Zamri I
    Sensors (Basel), 2008 Sep 18;8(9):5775-5791.
    PMID: 27873839
    Magnetic nanoparticles of Fe₃O₄ were synthesized and characterized using transmission electron microscopy and X-ray diffraction. The Fe₃O₄ nanoparticles were found to have an average diameter of 5.48 ±1.37 nm. An electrochemical biosensor based on immobilized alkaline phosphatase (ALP) and Fe₃O₄ nanoparticles was studied. The amperometric biosensor was based on the reaction of ALP with the substrate ascorbic acid 2-phosphate (AA2P). The incorporation of the Fe₃O₄ nanoparticles together with ALP into a sol gel/chitosan biosensor membrane has led to the enhancement of the biosensor response, with an improved linear response range to the substrate AA2P (5-120 μM) and increased sensitivity. Using the inhibition property of the ALP, the biosensor was applied to the determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The use of Fe₃O₄ nanoparticles gives a two-fold improvement in the sensitivity towards 2,4-D, with a linear response range of 0.5-30 μgL-1. Exposure of the biosensor to other toxicants such as heavy metals demonstrated only slight interference from metals such as Hg2+, Cu2+, Ag2+ and Pb2+. The biosensor was shown to be useful for the determination of the herbicide 2, 4-D because good recovery of 95-100 percent was obtained, even though the analysis was performed in water samples with a complex matrix. Furthermore, the results from the analysis of 2,4-D in water samples using the biosensor correlated well with a HPLC method.
  4. Rusli SFN, Daud SM, Abu Bakar MH, Loh KS, Masdar MS
    Molecules, 2022 Feb 03;27(3).
    PMID: 35164309 DOI: 10.3390/molecules27031045
    The biocathode in a microbial fuel cell (MFC) system is a promising and a cheap alternative method to improve cathode reaction performance. This study aims to identify the effect of the electrode combination between non-chemical modified stainless steel (SS) and graphite fibre brush (GFB) for constructing bio-electrodes in an MFC. In this study, the MFC had two chambers, separated by a cation exchange membrane, and underwent a total of four different treatments with different electrode arrangements (anodeǁcathode)-SSǁSS (control), GFBǁSS, GFBǁGFB and SSǁGFB. Both electrodes were heat-treated to improve surface oxidation. On the 20th day of the operation, the GFBǁGFB arrangement generated the highest power density, up to 3.03 W/m3 (177 A/m3), followed by the SSǁGFB (0.0106 W/m3, 0.412 A/m3), the GFBǁSS (0.0283 W/m3, 17.1 A/m3), and the SSǁSS arrangements (0.0069 W/m-3, 1.64 A/m3). The GFBǁGFB had the lowest internal resistance (0.2 kΩ), corresponding to the highest power output. The other electrode arrangements, SSǁGFB, GFBǁSS, and SSǁSS, showed very high internal resistance (82 kΩ, 2.1 kΩ and 18 kΩ, respectively) due to the low proton and electron movement activity in the MFC systems. The results show that GFB materials can be used as anode and cathode in a fully biotic MFC system.
  5. Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR
    PLoS One, 2017;12(9):e0185313.
    PMID: 28957374 DOI: 10.1371/journal.pone.0185313
    Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC), which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and 31P nuclear magnetic resonance (31P NMR) spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS). The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.
  6. Lim KL, Wong CY, Wong WY, Loh KS, Selambakkannu S, Othman NAF, et al.
    Membranes (Basel), 2021 May 27;11(6).
    PMID: 34072048 DOI: 10.3390/membranes11060397
    This review discusses the roles of anion exchange membrane (AEM) as a solid-state electrolyte in fuel cell and electrolyzer applications. It highlights the advancement of existing fabrication methods and emphasizes the importance of radiation grafting methods in improving the properties of AEM. The development of AEM has been focused on the improvement of its physicochemical properties, including ionic conductivity, ion exchange capacity, water uptake, swelling ratio, etc., and its thermo-mechano-chemical stability in high-pH and high-temperature conditions. Generally, the AEM radiation grafting processes are considered green synthesis because they are usually performed at room temperature and practically eliminated the use of catalysts and toxic solvents, yet the final products are homogeneous and high quality. The radiation grafting technique is capable of modifying the hydrophilic and hydrophobic domains to control the ionic properties of membrane as well as its water uptake and swelling ratio without scarifying its mechanical properties. Researchers also showed that the chemical stability of AEMs can be improved by grafting spacers onto base polymers. The effects of irradiation dose and dose rate on the performance of AEM were discussed. The long-term stability of membrane in alkaline solutions remains the main challenge to commercial use.
  7. Ibrahim I, Salehmin MNI, Balachandran K, Hil Me MF, Loh KS, Abu Bakar MH, et al.
    Front Microbiol, 2023;14:1192187.
    PMID: 37520357 DOI: 10.3389/fmicb.2023.1192187
    Microbial electrosynthesis (MES) is an emerging electrochemical technology currently being researched as a CO2 sequestration method to address climate change. MES can convert CO2 from pollution or waste materials into various carbon compounds with low energy requirements using electrogenic microbes as biocatalysts. However, the critical component in this technology, the cathode, still needs to perform more effectively than other conventional CO2 reduction methods because of poor selectivity, complex metabolism pathways of microbes, and high material cost. These characteristics lead to the weak interactions of microbes and cathode electrocatalytic activities. These approaches range from cathode modification using conventional engineering approaches to new fabrication methods. Aside from cathode development, the operating procedure also plays a critical function and strategy to optimize electrosynthesis production in reducing operating costs, such as hybridization and integration of MES. If this technology could be realized, it would offer a new way to utilize excess CO2 from industries and generate profitable commodities in the future to replace fossil fuel-derived products. In recent years, several potential approaches have been tested and studied to boost the capabilities of CO2-reducing bio-cathodes regarding surface morphology, current density, and biocompatibility, which would be further elaborated. This compilation aims to showcase that the achievements of MES have significantly improved and the future direction this is going with some recommendations. Highlights - MES approach in carbon sequestration using the biotic component.- The role of microbes as biocatalysts in MES and their metabolic pathways are discussed.- Methods and materials used to modify biocathode for enhancing CO2 reduction are presented.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links