METHODS: A total of 12 PD bags (3 for each type of solution) containing ceftazidime and heparin were prepared and stored at 4°C for 120 hours, and then at 25°C for 6 hours, and finally at 37°C for 12 hours. An aliquot was withdrawn after predefined time points and analyzed for the concentration of ceftazidime and heparin using high-performance liquid-chromatography (HPLC). Samples were assessed for pH, color changes, particle content, and anticoagulant activity of heparin.
RESULTS: Ceftazidime and heparin retained more than 91% of their initial concentration when stored at 4°C for 120 hours followed by storage at 25°C for 6 hours and then at 37°C for 12 hours. Heparin retained more than 95% of its initial activity throughout the study period. Particle formation was not detected at any time under the storage conditions. The pH and color remained essentially unchanged throughout the study.
CONCLUSIONS: Ceftazidime-heparin admixture retains its stability over long periods of storage at different temperatures, allowing its potential use for PDAP treatment in outpatient and remote settings.
OBJECTIVES: The primary objective of the study was to assess the anti-hemorrhoidal potential of the ethanolic seed extract of Scaphium affine.
METHODS: After the soxhlet extraction method, the seed extract from Scaphium affine was first submitted to phytochemical standardization and then GC-MS analysis. Rats were given Croton oil and Jatropha oil to develop hemorrhoids, and Scaphium affine seed extract (ESA) was administered orally for 5 days and 3 days, respectively, at doses of 1000 and 500 mg/kg. The Rectoanal coefficient (RAC) was calculated as an inflammatory marker. The hemorrhoidal tissues were also subjected to cytokine profiling, biochemical estimation and histopathology.
RESULTS: ESA demonstrated the presence of flavonoids, saponins, phytosterols, phenols, and tannins. GCMS analysis elucidated the presence of hexadecanoic acid 2 hydroxy -1,3 propane diyl ester,9 Octadecanoic acid ethyl ester, Cyclohexane 1,4 di methyl cis, Farnesol isomer,1, E-11, Z-13 octa decatriene, Stigmasterol, N-(5 ethyl -1,3,4-thiadiazol-yl) benzamide, N, N Dinitro 1,3,5,7 tetraza bicyclo 93,3,1) as major phytoconstituents. The results depicted more potent anti-hemorrhoidal activity of ESA at 1000 mg/kg, p.o., which was evident through a decrease in RAC. A significant decline in the levels of IL-1β, IL-6, and TNF-α expression was observed, along with the restoration of altered antioxidants and enzymes. Histopathological analysis confirmed the tissue recovery as it revealed minimal inflammation and decreased dilated blood vessels in treated animals.
CONCLUSION: Based on the results it can be concluded that seeds of Scaphium affine showed significant anti-hemorrhoid agents which may be attributed to their anti-inflammatory and anti-oxidant potential due to the presence of certain phytoconstituents in it. The study also supports the traditional use of seeds of Scaphium affine for the first time in the treatment of hemorrhoids.
METHODS: A total of 15 PD bags (3 bags for each type of PD solution) containing meropenem and heparin and 24 PD bags (3 bags for each type of PD solution) containing PIP/TZB and heparin were prepared and stored at 4°C for 168 hours. The same bags were stored at 25°C for 3 hours followed by 10 hours at 37°C. An aliquot withdrawn before storage and at defined time points was analyzed for the concentration of meropenem, PIP, TZB, and heparin using high-performance liquid chromatography. Samples were also analysed for particle content, pH and color change, and the anticoagulant activity of heparin.
RESULTS: Meropenem and heparin retained more than 90% of their initial concentration in 4 out of 5 types of PD solutions when stored at 4°C for 168 hours, followed by storage at 25°C for 3 hours and then at 37°C for 10 hours. Piperacillin/tazobactam and heparin were found to be stable in all 8 types of PD solutions when stored under the same conditions. Heparin retained more than 98% of its initial anticoagulant activity throughout the study period. No evidence of particle formation, color change, or pH change was observed at any time under the storage conditions employed in the study.
CONCLUSIONS: This study provides clinically important information on the stability of meropenem and PIP/TZB, each in combination with heparin, in different PD solutions. The use of meropenem-heparin admixed in pH-neutral PD solutions for the treatment of PDAP should be avoided, given the observed suboptimal stability of meropenem.