Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. El-Nouby MAM, Lim LW
    Anal Sci, 2023 Dec;39(12):2019-2029.
    PMID: 37672170 DOI: 10.1007/s44211-023-00416-3
    This article describes the fabrication of porous nicotinic acid-functionalized chito-oligosaccharide-bonded titania/silica hybrid monoliths (TiO2/SiO2@ChO-N) through a co-gelation sol-gel process. A capillary monolith with a well-defined and homogeneous structure was obtained by controlling the hydrolysis speed of titanium alkoxides in a sol mixture by using glycerol and acetylacetone. As a result of the functionalization with chito-oligosaccharides (ChO)-modified nicotinic acid, the obtained stationary phase provides superior physiochemical properties, such as a cationic hydrophilic surface, porosity, and mechanical strength. Scanning electron microscope and attenuated total reflectance-infrared spectroscopy were used to characterize the functionalized monolithic columns. The produced capillary columns showed high chromatographic performance with acceptable selectivity for charged analytes as well as organic polar compounds such as nucleic bases, nucleosides, carbamate pesticides, and strobilurin fungicides. The obtained results also indicated that the functionalized ChO's amino, amide, hydroxyl, and pyridinium ring moieties served as hydrophilic electrostatic traps for charged substances, in addition to stroing π-π interaction with the carbamate pesticides and strobilurin fungicides analytes via hydrogen bonding.
  2. Qutob M, Hussein MA, Alamry KA, Rafatullah M
    RSC Adv, 2022 Jun 22;12(29):18373-18396.
    PMID: 35799916 DOI: 10.1039/d2ra02469a
    Water scarcity and the accumulation of recalcitrance compounds into the environment are the main reasons behind the attraction of researchers to use advanced oxidation processes (AOPs). Many AOP systems have been used to treat acetaminophen (ACT) from an aqueous medium, which leads to generating different kinetics, mechanisms, and by-products. In this work, state-of-the-art studies on ACT by-products and their biotoxicity, as well as proposed degradation pathways, have been collected, organized, and summarized. In addition, the Fukui function was used for predicting the most reactive sites in the ACT molecule. The most frequently detected by-products in this review were hydroquinone, 1,4-benzoquinone, 4-aminophenol, acetamide, oxalic acid, formic acid, acetic acid, 1,2,4-trihydroxy benzene, and maleic acid. Both the experimental and prediction tests revealed that N-(3,4-dihydroxy phenyl) acetamide was mutagenic. Meanwhile, N-(2,4-dihydroxy phenyl) acetamide and malonic acid were only found to be mutagenic in the prediction test. The findings of the LC50 (96 h) test revealed that benzaldehyde is the most toxic ACT by-products and hydroquinone, N-(3,4-dihydroxyphenyl)formamide, 4-methylbenzene-1,2-diol, benzoquinone, 4-aminophenol, benzoic acid, 1,2,4-trihydroxybenzene, 4-nitrophenol, and 4-aminobenzene-1,2-diol considered harmful. The release of them into the environment without treatment may threaten the ecosystem. The degradation pathway based on the computational method was matched with the majority of ACT proposed pathways and with the most frequent ACT by-products. This study may contribute to enhance the degradation of ACT by AOP systems.
  3. Qutob M, Rafatullah M, Muhammad SA, Alamry KA, Hussein MA
    J Environ Manage, 2024 Feb 27;353:120179.
    PMID: 38295641 DOI: 10.1016/j.jenvman.2024.120179
    Natural soil minerals often contain numerous impurities, resulting in comparatively lower catalytic activity. Tropical soils are viewed as poor from soil organic matter, cations, and anions, which are considered the main impurities in the soil that are restricted to utilizing natural minerals as a catalyst. In this regard, the dissolved iron and hematite crystals that presented naturally in tropical soil were evaluated to activate oxidants and degrade pyrene. The optimum results obtained in this study were 73 %, and the rate constant was 0.0553 h-1 under experimental conditions [pyrene] = 300 mg/50 g, pH = 7, T = 55 °C, airflow = 260 mL/min, [Persulfate (PS)] = 1.0 g/L, and humic acid (HA) ( % w/w) = 0.5 %. The soil characterization analysis after the remediation process showed an increase in moieties and cracks of the soil aggregate, and a decline in the iron and aluminium contents. The scavengers test revealed that both SO4•- and O2•- were responsible for the pyrene degradation, while HO• had a minor role in the degradation process. In addition, the monitoring of by-products, degradation pathways, and toxicity assessment were also investigated. This system is considered an efficient, green method, and could provide a step forward to develop low-cost soil remediation for full-scale implementation.
  4. Al-Alwani MA, Mohamad AB, Kadhum AA, Ludin NA
    PMID: 25483560 DOI: 10.1016/j.saa.2014.11.018
    Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.
  5. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum AAH, Sopian K
    PMID: 28213142 DOI: 10.1016/j.saa.2017.02.026
    Current study employs mixture of chlorophyll-anthocyanin dye extracted from leaves of Cordyline fruticosa as new sensitizers for dye-sensitized solar cell (DSSCs), as well as betalains dye obtained from fruit of Hylocereus polyrhizus. Among ten pigments solvents, the ethanol and methanol extracts revealed higher absorption spectra of pigments extracted from C. fruticosa and H. polyrhizus respectively. A major effect of temperature increase was studied to increase the extraction yield. The results indicated that extraction temperature between 70 and 80°C exhibited a high dye concentration of each plant than other temperatures. The optimal temperature was around 80°C and there was a sharp decrease of dye concentration at temperatures higher than this temperature. According to experimental results, the conversion efficiency of DSSC fabricated by mixture of chlorophyll and anthocyanin dyes from C. fruticosa leaves is 0.5% with short-circuit current (Isc) of 1.3mA/cm-2, open-circuit voltage (Voc) of 0.62V and fill factor (FF) of 60.16%. The higher photoelectric conversion efficiency of the DSSC prepared from the extract of H. polyrhizus was 0.16%, with Voc of 0.5V, Isc of 0.4mA/cm-2 and FF of 79.16%. The DSSC based betalain dye extracted from fruit of H. polyrhizus shows higher maximum IPCE of 44% than that of the DSSCs sensitized with mixed chlorophyll-anthocyanin dye from C. fruticosa (42%).
  6. Albadr MAA, Tiun S, Al-Dhief FT, Sammour MAM
    PLoS One, 2018;13(4):e0194770.
    PMID: 29672546 DOI: 10.1371/journal.pone.0194770
    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
  7. Ashour GR, Hussein MA, Sobahi TR, Alamry KA, Alqarni SA, Rafatullah M
    Polymers (Basel), 2021 Oct 16;13(20).
    PMID: 34685328 DOI: 10.3390/polym13203569
    In the current study, a variety of sulfonated polyethersulfone (SPES)-based ion-exchange membranes were prepared and utilized as efficient and selective solid adsorbents for the detection of Co(II) ions in aquatic solutions. SPES membranes were treated with a variety of cations at a 2:1 ratio overnight. The produced materials were assessed via XRD, FT-IR, SEM, and TGA analyses. The structure of these materials was confirmed by FT-IR and XRD, which also confirmed the inclusion of Na+, NH4+, and amberlite on the SPES surface successfully. TGA analysis showed that the thermal stabilities of these materials were enhanced, and the order of stability was NH4-SPES > SPES > Na-SPES > A-SPES. Furthermore, the efficiency of these modified membranes for the determination and adsorption of a variety of metal ions was also examined by the ICP-OES analytical technique. A-SPES expressed a powerful efficiency of adsorption, and it showed an efficient as well as quantitative adsorption at pH = 6. Moreover, A-SPES displayed the highest adsorption capacity of 90.13 mg/g for Co(II) through the Langmuir adsorption isotherm.
  8. Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI
    Anal Sci, 2022 Dec;38(12):1457-1487.
    PMID: 36198988 DOI: 10.1007/s44211-022-00190-8
    Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
  9. Al-Alwani MAM, Ludin NA, Mohamad AB, Kadhum AAH, Mukhlus A
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Mar 05;192:487-498.
    PMID: 29133132 DOI: 10.1016/j.saa.2017.11.018
    The natural dyes anthocyanin and chlorophyll were extracted from Musa acuminata bracts and Alternanthera dentata leaves, respectively. The dyes were then applied as sensitizers in TiO2-based dye-sensitized solar cells (DSSCs). The ethanol extracts of the dyes had maximum absorbance. High dye yields were obtained under extraction temperatures of 70 to 80°C, and the optimal extraction temperature was approximately 80°C. Moreover, dye concentration sharply decreased under extraction temperatures that exceeded 80°C. High dye concentrations were obtained using acidic extraction solutions, particularly those with a pH value of 4. The DSSC fabricated with anthocyanin from M. acuminata bracts had a conversion efficiency of 0.31%, short-circuit current (Isc) of 0.9mA/cm2, open-circuit voltage (Voc) of 0.58V, and fill factor (FF) of 62.22%. The DSSC sensitized with chlorophyll from A. dentata leaves had a conversion efficiency of 0.13%, Isc of 0.4mA/cm-2,Voc of 0.54V, and FF of 67.5%. The DSSC sensitized with anthocyanin from M. acuminata bracts had a maximum incident photon-to-current conversion efficiency of 42%, which was higher than that of the DSSC sensitized with chlorophyll from A. dentata leaves (23%). Anthocyanin from M. acuminata bracts exhibited the best photosensitization effects.
  10. Abou Zaid AA, Younes AM, Desouky AY, El-Seify MA
    J Parasit Dis, 2021 Sep;45(3):831-837.
    PMID: 34475666 DOI: 10.1007/s12639-021-01364-3
    The genus Henneguya is the second largest within the class Myxosporea, which infects marine and freshwater fish. One hundred Clarias gariepinus specimens were collected alive from a branch of the Nile River in Kafrelsheikh, Egypt. Microscopic and molecular procedures were used to describe how Henneguya fusiformis infects the ovaries of C. gariepinus. The infected fish showed no pathogenic changes except for macroscopic creamy whitish nodules in their ovaries with the highest prevalence during the spring season. The mature spores are spindle-shaped. The total spore length, spore body length and width are 53.4 ± 0.8 (52.5-54.3) µm, 29.8 ± 0.5 (29.2-30.4) µm and 6.5 ± 0.3 (6.1-6.9) µm, respectively. The spore anterior end consisted of two equal polar capsules, located in a tandem position, each one measuring 4.2 × 2.1 µm. The polar filament formed a coil with 6-8 turns. The measurement of the spore end with two extended processes was 24.3 ± 0.4 (23.9-24.8) µm. Phylogenetic analyses of the 18S ribosomal RNA gene sequence revealed that H. fusiformis are clustered together with other myxobolids that are histozoic in channel catfish, Ictalurus punctatus, and Asian Redtail catfish, Hemibagrus nemurus" (Clariidae) in the United States and Malaysia, respectively. To the best of our knowledge, this is the first record of H. fusiformis in Egypt. Additionally, our study is the first record of H. fusiformis in the ovaries of C. gariepinus.
  11. Ooi EH, Lee KW, Yap S, Khattab MA, Liao IY, Ooi ET, et al.
    Comput Biol Med, 2019 03;106:12-23.
    PMID: 30665137 DOI: 10.1016/j.compbiomed.2019.01.003
    Effects of different boundary conditions prescribed across the boundaries of radiofrequency ablation (RFA) models of liver cancer are investigated for the case where the tumour is at the liver boundary. Ground and Robin-type conditions (electrical field) and body temperature and thermal insulation (thermal field) conditions are examined. 3D models of the human liver based on publicly-available CT images of the liver are developed. An artificial tumour is placed inside the liver at the boundary. Simulations are carried out using the finite element method. The numerical results indicated that different electrical and thermal boundary conditions led to different predictions of the electrical potential, temperature and thermal coagulation distributions. Ground and body temperature conditions presented an unnatural physical conditions around the ablation site, which results in more intense Joule heating and excessive heat loss from the tissue. This led to thermal damage volumes that are smaller than the cases when the Robin type or the thermal insulation conditions are prescribed. The present study suggests that RFA simulations in the future must take into consideration the choice of the type of electrical and thermal boundary conditions to be prescribed in the case where the tumour is located near to the liver boundary.
  12. Hossain K, Sabapathy T, Jusoh M, Abdelghany MA, Soh PJ, Osman MN, et al.
    Polymers (Basel), 2021 Aug 22;13(16).
    PMID: 34451357 DOI: 10.3390/polym13162819
    In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular- and a nonagonal-shaped unit cell. The size of the antenna was 0.825 λ0 × 0.75 λ0 × 0.075 λ0, whereas each MTMUCA was sized at 0.312 λ0 × 0.312 λ0, with respect to a free space wavelength of 7.5 GHz. The antenna was fabricated using viscose-wool felt due to its strong metal-polymer adhesion. A naturally available polymer, wool, and a human-made polymer, viscose, that was derived from regenerated cellulose fiber were used in the manufacturing of the adopted viscose-wool felt. The MTMUCA exhibits the characteristics of ENG, with a bandwidth (BW) of 11.68 GHz and an NZRI BW of 8.5 GHz. The MTMUCA was incorporated on the planar monopole to behave as a shunt LC resonator, and its working principles were described using an equivalent circuit. The results indicate a 10 dB impedance fractional bandwidth of 142% (from 2.55 to 15 GHz) in simulations, and 138.84% (from 2.63 to 14.57 GHz) in measurements obtained by the textile UWB antenna. A peak realized gain of 4.84 dBi and 4.4 dBi was achieved in simulations and measurements, respectively. A satisfactory agreement between simulations and experiments was achieved, indicating the potential of the proposed negative index metamaterial-based antenna for microwave applications.
  13. Khaldoon S, Lalung J, Maheer U, Kamaruddin MA, Yhaya MF, Alsolami ES, et al.
    Polymers (Basel), 2022 Nov 07;14(21).
    PMID: 36365762 DOI: 10.3390/polym14214770
    Recently, the contribution of earthworms to plastic degradation and their capability to swallow smaller plastic fragments, known as microplastics, has been emphasized. The worm physically changes the size of microplastics and enhances microbial activities to increase the possibility of degradation. However, no research has shown that earthworms can chemically degrade microplastics to an element form, CO2 or H2O. In this review, previous research has been thoroughly explored to analyse the role that earthworms could play in plastic degradation in the soil. Earthworms can significantly affect the physical characteristics of plastics. However, earthworms' abilities to chemically degrade or change the chemical structure of plastics and microplastics have not been observed. Additionally, earthworms exhibit selective feeding behaviour, avoiding areas containing a high plastics concentration and rejecting plastics. Consequently, earthworms' abilities to adapt to the microplastics in soil in the environment can cause a problem. Based on this review, the challenges faced in earthworm application for plastic degradation are mostly expected to be associated with the toxicity and complexity of the plastic material and environmental factors, such as the moisture content of the soil and its temperature, microbial population, and feeding method.
  14. Mohammadi G, Hafezieh M, Karimi AA, Azra MN, Van Doan H, Tapingkae W, et al.
    Fish Shellfish Immunol, 2022 Jan;120:304-313.
    PMID: 34838702 DOI: 10.1016/j.fsi.2021.11.028
    This study evaluated the growth performance, immune responses, and disease resistance of Nile tilapia upon pistachio hulls derived polysaccharide (PHDP) and Pediococcus acidilactici (PA) separately or as synbiotic. Fish received four types of diets: T1, control; T2, PHDP (0.1%); T3, PA (0.2%); T4, PHDP (0.1%) +PA (0.2%) for 56 days. The results showed that final weight and weight gain were markedly higher in fish fed T4 diet than that given T1 and T2 diets (P ≤ 0.05). In addition, a significantly greater specific growth rate was obtained by the T4 diet compared to the control. Fish survival was significantly improved in all supplemented diets compared to the control. On the other hand, the activities of lipase, protease, and amylase showed significant increases in the T4 group compared with other feeding groups. The total leucocytes and lymphocytes proportion significantly elevated in T3 and T4 than remaining groups (P ≤ 0.05). Further, fish fed T3 diet presented significantly higher serum total protein, total immunoglobulin, lysozyme activity (LYZ), alternative complement activity (ACH50), and alkaline phosphatase activity compared to fish fed T1 and T2 diets, while the mentioned indices were found significantly highest in T4 group than others. Fish received T3 and T4 diets had higher skin mucus LYZ and ACH50 than those fed T1 and T2 diets (P ≤ 0.05). The malondialdehyde levels were significantly declined in T3 and T4 when compared to the control. Fish fed T3 and T4 diets demonstrated significantly enhanced superoxide dismutase, catalase, and glutathione peroxidase activities compared to the control. The intestinal propionic acid significantly increased by T2 and T4 diets, while the highest levels of acetic acid detected in fish given T4 diet. The expression levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 10 (IL-10) were significantly affected by T3 and T4 supplements. The efficacy of T4 diet against Aeromonas hydrophila infection was documented by a significantly lower mortality rate. In conclusion, the combination of PHDP and PA presented promising results as a synbiotic feed additive for Nile tilapia.
  15. Halboup AM, Alzoubi KH, Khabour OF, Alomari MA, Refat M, Al-Khazzan AY, et al.
    J Multidiscip Healthc, 2023;16:707-716.
    PMID: 36938485 DOI: 10.2147/JMDH.S399405
    BACKGROUND: Following the coronavirus disease (COVID-19) declaration as a pandemic, Yemen has started applying preventive measures to prevent its spread. This study aims to identify the perception regarding the nature of the COVID-19 disease, susceptibility to severe forms of the disease, and its relationship to seasonal influenza among the population of Yemen.

    METHODS: This was a cross-sectional study of the public in Yemen. The relationship between participants' sociodemographic factors and their responses was assessed by the chi-square test.

    RESULTS: A total of 748 participants agreed to participate in the study. Regarding the nature of the diseases, nearly half of the participants (48.8%, n=352) believed that COVID-19 is a naturally occurring human virus that is a serious and fatal disease (61.2%, n=448). The majority (74.9%; n=518) did not agree that bacteria cause COVID-19. More than half of the participants (57.5%, n=423) believed this disease is transmitted to humans through a host animal. Regarding the vulnerable groups to develop severe COVID-19 infection, most of the participants pointed out that the elderly (94.3%, n=705), people with chronic diseases (89.9%, n=669), and pregnant women (53%, n=365) were more susceptible to severe diseases. Regarding symptoms, the majority (61.9%, n=458) of the participants agreed that the symptoms of COVID-19 are similar to those of seasonal influenza. Additionally, the majority (81.9%, n=579) agreed that some individuals develop more severe symptoms than seasonal influenza, particularly those with chronic illness. Gender, age, and education were found to be associated with participants' perceptions regarding the nature of the virus and susceptibility to severe disease.

    CONCLUSION: Participants demonstrate a good understanding of the nature and susceptibility to complications associated with COVID-19 disease and its relationship to influenza. However, the respondents with a lower level of education might require additional educational campaigns to improve their awareness of the disease.

  16. Alosaimi AM, Alorabi RO, Katowah DF, Al-Thagafi ZT, Alsolami ES, Hussein MA, et al.
    Biomedicines, 2023 Mar 21;11(3).
    PMID: 36979948 DOI: 10.3390/biomedicines11030967
    The hybridization between polymers and carbon materials is one of the most recent and crucial study areas which abstracted more concern from scientists in the past few years. Polymers could be classified into two classes according to the source materials synthetic and natural. Synthetic polymeric materials have been applied over a floppy zone of industrial fields including the field of biomedicine. Carbon nanomaterials including (fullerene, carbon nanotubes, and graphene) classified as one of the most significant sources of hybrid materials. Nanocarbons are improving significantly mechanical properties of polymers in nanocomposites in addition to physical and chemical properties of the new materials. In all varieties of proposed bio-nanocomposites, a considerable improvement in the microbiological performance of the materials has been explored. Various polymeric materials and carbon-course nanofillers were present, along with antibacterial, antifungal, and anticancer products. This review spots the light on the types of synthetic polymers-based carbon materials and presented state-of-art examples on their application in the area of biomedicine.
  17. Anis Mohamad Sukri S, Andu Y, Tuan Harith Z, Sarijan S, Naim Firdaus Pauzi M, Seong Wei L, et al.
    Saudi J Biol Sci, 2022 Apr;29(4):2514-2519.
    PMID: 35531242 DOI: 10.1016/j.sjbs.2021.12.027
    The study aims to evaluate the effects of pineapples waste on the growth, texture quality and flesh colour of Nile tilapia (Oreochromis niloticus) fingerlings. Fingerlings were fed with four different levels of pineapple waste diets throughout 56 days, which contain a control group (Diet 1) and experimental diets that formulated with 10% (Diet 2), 20% (Diet 3) and 30% (Diet 4) of pineapple waste. The experimental diet was formulated with rice bran, fish meal, soybean meal, vitamin and mineral premix, vegetable oil and binder to attain 32% dietary protein. The results revealed that the formulated fish diet with pineapple waste given the optimum weight gain, weight gain percentage, specific growth rate than the control group, where Diet 4 has shown the highest value (p 
  18. Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, et al.
    Antioxidants (Basel), 2021 Aug 27;10(9).
    PMID: 34572996 DOI: 10.3390/antiox10091364
    Balanced aquafeed is the key factor for enhancing the productivity of aquatic animals. In this context, aquatic animals require optimal amounts of lipids, proteins, carbohydrates, vitamins, and minerals. The original plant and animals' ingredients in the basal diets are insufficient to provide aquafeed with suitable amounts of minerals. Concurrently, elements should be incorporated in aquafeed in optimal doses, which differ based on the basal diets' species, age, size, and composition. Selenium is one of the essential trace elements involved in various metabolic, biological, and physiological functions. Se acts as a precursor for antioxidative enzyme synthesis leading to high total antioxidative capacity. Further, Se can enhance the immune response and the tolerance of aquatic animals to infectious diseases. Several metabolic mechanisms, such as thyroid hormone production, cytokine formation, fecundity, and DNA synthesis, require sufficient Se addition. The recent progress in the nanotechnology industry is also applied in the production of Se nanoparticles. Indeed, Se nanoparticles are elaborated as more soluble and bioavailable than the organic and non-organic forms. In aquaculture, multiple investigations have elaborated the role of Se nanoparticles on the performances and wellbeing of aquatic animals. In this review, the outputs of recent studies associated with the role of Se nanoparticles on aquatic animals' performances were simplified and presented for more research and development.
  19. El Basuini MF, Teiba II, Shahin SA, Mourad MM, Zaki MAA, Labib EMH, et al.
    Fish Shellfish Immunol, 2022 Jan;120:337-344.
    PMID: 34883256 DOI: 10.1016/j.fsi.2021.12.002
    Nile tilapia can tolerate a wide range of farming conditions; however, fluctuations in the environmental conditions may impair their health status. The incorporation of medicinal herbs in aquafeed is suggested to overcome stressful conditions. In this study, dietary Guduchi (Tinospora cordifolia) was evaluated on the growth performance, antioxidative capacity, immune response, and resistance of Nile tilapia against hypoxia stress. Fish fed five diets incorporated with Guduchi at 0, 2, 4, 6, and 8 g/kg for 56 days then exposed with hypoxia stress for 72 h. The growth performance, feed intake, and feed efficiency ratio were significantly (P 
  20. Hussain R, Ullah H, Rahim F, Sarfraz M, Taha M, Iqbal R, et al.
    Molecules, 2022 Sep 18;27(18).
    PMID: 36144820 DOI: 10.3390/molecules27186087
    Twenty-four analogues of benzimidazole-based thiazoles (1-24) were synthesized and assessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory potential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes, having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or -withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the primary determinants of the structure-activity relationship (SAR). In order to understand how the most active derivatives interact with the amino acids in the active site of the enzyme, molecular docking studies were conducted. The results obtained supported the experimental data. Additionally, the structures of all newly synthesized compounds were elucidated by using several spectroscopic methods like 13C-NMR, 1H-NMR and HR EIMS.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links