Displaying all 8 publications

Abstract:
Sort:
  1. Mohd-Yusof NY, Monroig O, Mohd-Adnan A, Wan KL, Tocher DR
    Fish Physiol Biochem, 2010 Dec;36(4):827-43.
    PMID: 20532815 DOI: 10.1007/s10695-010-9409-4
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
  2. Ibrahim N, Jamaluddin ND, Tan LL, Mohd Yusof NY
    Sensors (Basel), 2021 Jul 28;21(15).
    PMID: 34372350 DOI: 10.3390/s21155114
    The emergence of highly pathogenic and deadly human coronaviruses, namely SARS-CoV and MERS-CoV within the past two decades and currently SARS-CoV-2, have resulted in millions of human death across the world. In addition, other human viral diseases, such as mosquito borne-viral diseases and blood-borne viruses, also contribute to a higher risk of death in severe cases. To date, there is no specific drug or medicine available to cure these human viral diseases. Therefore, the early and rapid detection without compromising the test accuracy is required in order to provide a suitable treatment for the containment of the diseases. Recently, nanomaterials-based biosensors have attracted enormous interest due to their biological activities and unique sensing properties, which enable the detection of analytes such as nucleic acid (DNA or RNA), aptamers, and proteins in clinical samples. In addition, the advances of nanotechnologies also enable the development of miniaturized detection systems for point-of-care (POC) biosensors, which could be a new strategy for detecting human viral diseases. The detection of virus-specific genes by using single-stranded DNA (ssDNA) probes has become a particular interest due to their higher sensitivity and specificity compared to immunological methods based on antibody or antigen for early diagnosis of viral infection. Hence, this review has been developed to provide an overview of the current development of nanoparticles-based biosensors that target pathogenic RNA viruses, toward a robust and effective detection strategy of the existing or newly emerging human viral diseases such as SARS-CoV-2. This review emphasizes the nanoparticles-based biosensors developed using noble metals such as gold (Au) and silver (Ag) by virtue of their powerful characteristics as a signal amplifier or enhancer in the detection of nucleic acid. In addition, this review provides a broad knowledge with respect to several analytical methods involved in the development of nanoparticles-based biosensors for the detection of viral nucleic acid using both optical and electrochemical techniques.
  3. Tan SL, Mohd-Adnan A, Mohd-Yusof NY, Forstner MR, Wan KL
    Gene, 2008 Mar 31;411(1-2):77-86.
    PMID: 18280674 DOI: 10.1016/j.gene.2008.01.008
    Using a novel library of 5637 expressed sequence tags (ESTs) from the brain tissue of the Asian seabass (Lates calcarifer), we first characterized the brain transcriptome for this economically important species. The ESTs generated from the brain of L. calcarifer yielded 2410 unique transcripts (UTs) which comprise of 982 consensi and 1428 singletons. Based on database similarity, 1005 UTs (41.7%) can be assigned putative functions and were grouped into 12 functional categories related to the brain function. Amongst others, we have identified genes that are putatively involved in energy metabolism, ion pumps and channels, synapse related genes, neurotransmitter and its receptors, stress induced genes and hormone related genes. Subsequently we selected a putative preprocGnRH-II precursor for further characterization. The complete cDNA sequence of the gene obtained was found to code for an 85-amino acid polypeptide that significantly matched preprocGnRH-II precursor sequences from other vertebrates, and possesses structural characteristics that are similar to that of other species, consisting of a signal peptide (23 residues), a GnRH decapeptide (10 residues), an amidation/proteolytic-processing signal (glycine-lysine-argine) and a GnRH associated peptide (GAP) (49 residues). Phylogenetic analysis showed that this putative L. calcarifer preprocGnRH-II sequence is a member of the subcohort Euteleostei and divergent from the sequences of the subcohort Otocephalan. These findings provide compelling evidence that the putative L. calcarifer preprocGnRH-II precursor obtained in this study is orthologous to that of other vertebrates. The functional prediction of this preprocGnRH-II precursor sequence through in silico analyses emphasizes the effectiveness of the EST approach in gene identification in L. calcarifer.
  4. Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, et al.
    Mar Drugs, 2020 Feb 05;18(2).
    PMID: 32033403 DOI: 10.3390/md18020103
    Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
  5. Ibrahim N, Gan KB, Mohd Yusof NY, Goh CT, Krupa B N, Tan LL
    Talanta, 2024 Jul 01;274:125916.
    PMID: 38547835 DOI: 10.1016/j.talanta.2024.125916
    In this report, a facile and label-free electrochemical RNA biosensor is developed by exploiting methylene blue (MB) as an electroactive positive ligand of G-quadruplex. The electrochemical response mechanism of the nucleic acid assay was based on the change in differential pulse voltammetry (DPV) signal of adsorbed MB on the immobilized human telomeric G-quadruplex DNA with a loop that is complementary to the target RNA. Hybridization between synthetic positive control RNA and G-quadruplex DNA probe on the transducer platform rendered a conformational change of G-quadruplex to double-stranded DNA (dsDNA), and increased the redox current of cationic MB π planar ligand at the sensing interface, thereby the electrochemical signal of the MB-adsorbed duplex is proportional to the concentration of target RNA, with SARS-CoV-2 (COVID-19) RNA as the model. Under optimal conditions, the target RNA can be detected in a linear range from 1 zM to 1 μM with a limit of detection (LOD) obtained at 0.59 zM for synthetic target RNA and as low as 1.4 copy number for positive control plasmid. This genosensor exhibited high selectivity towards SARS-CoV-2 RNA over other RNA nucleotides, such as SARS-CoV and MERS-CoV. The electrochemical RNA biosensor showed DPV signal, which was proportional to the 2019-nCoV_N_positive control plasmid from 2 to 200000 copies (R2 = 0.978). A good correlation between the genosensor and qRT-PCR gold standard was attained for the detection of SARS-CoV-2 RNA in terms of viral copy number in clinical samples from upper respiratory specimens.
  6. Jeningsih, Tan LL, Ulianas A, Heng LY, Mazlan NF, Jamaluddin ND, et al.
    Sensors (Basel), 2020 Mar 25;20(7).
    PMID: 32218202 DOI: 10.3390/s20071820
    A DNA micro-optode for dengue virus detection was developed based on the sandwich hybridization strategy of DNAs on succinimide-functionalized poly(n-butyl acrylate) (poly(nBA-NAS)) microspheres. Gold nanoparticles (AuNPs) with an average diameter of ~20 nm were synthesized using a centrifugation-based method and adsorbed on the submicrometer-sized polyelectrolyte-coated poly(styrene-co-acrylic acid) (PSA) latex particles via an electrostatic method. The AuNP-latex spheres were attached to the thiolated reporter probe (rDNA) by Au-thiol binding to functionalize as an optical gold-latex-rDNA label. The one-step sandwich hybridization recognition involved a pair of a DNA probe, i.e., capture probe (pDNA), and AuNP-PSA reporter label that flanked the target DNA (complementary DNA (cDNA)). The concentration of dengue virus cDNA was optically transduced by immobilized AuNP-PSA-rDNA conjugates as the DNA micro-optode exhibited a violet hue upon the DNA sandwich hybridization reaction, which could be monitored by a fiber-optic reflectance spectrophotometer at 637 nm. The optical genosensor showed a linear reflectance response over a wide cDNA concentration range from 1.0 × 10-21 M to 1.0 × 10-12 M cDNA (R2 = 0.9807) with a limit of detection (LOD) of 1 × 10-29 M. The DNA biosensor was reusable for three consecutive applications after regeneration with mild sodium hydroxide. The sandwich-type optical biosensor was well validated with a molecular reverse transcription polymerase chain reaction (RT-PCR) technique for screening of dengue virus in clinical samples, e.g., serum, urine, and saliva from dengue virus-infected patients under informed consent.
  7. Jamaluddin A, Mohd Abd Rahman SM, Abd Manan M, Abd Razak DL, Abd Rashid NY, Abd Ghani A, et al.
    Cell Mol Biol (Noisy-le-grand), 2023 Nov 15;69(11):9-16.
    PMID: 38015547 DOI: 10.14715/cmb/2023.69.11.2
    In this study, UVA- and UVB-irradiated human fibroblasts were used to investigate the anti-photoaging efficacy of two aqueous extracts from Aspergillus oryzae-fermented broken rice (FBR) and brewers' rice (FBrR). As UVA and UVB can damage the dermal and epidermal layers, respectively, two UV radiation approaches were utilised: i) direct UVA irradiation on fibroblasts, and ii) UVB-irradiated keratinocytes indirectly co-cultured with fibroblasts to observe their epithelial-mesenchymal interaction during UVB-induced photoaging. The anti-photoaging properties were tested utilising biochemical tests and quantitative polymerase chain reaction (qPCR). The treatment of UV-irradiated human fibroblasts with FBR and FBrR dramatically downregulates MMP-1 and SFE gene expression. Nonetheless, MMP-1 secretion was inhibited by FBR and FBrR, with more substantial decreases in UVB-treated co-cultures, ranging from 0.76- to 1.89-fold relative to the untreated control. In UVA-treated fibroblasts, however, the elastase-inhibiting activity of FBR and FBrR is up to 1.63-fold and 2.13-fold more potent, respectively. In addition, post-UV irradiation treatment with FBR and FBrR was able to repair and enhance collagen formation in UVA-irradiated fibroblasts. Both FBR and FBrR were able to upregulate elastin gene expression in fibroblasts under both culture conditions, especially at 50 µg/mL. The pro-inflammatory cytokines TNF-, IL-1ß, and IL-6 were likewise lowered by FBR and FBrR, which may have contributed to the anti-photoaging effect of the UVB-treated co-culture. These results reveal that FBR and FBrR inhibit photoaging in human fibroblasts under both UV induction conditions. In conclusion, FBR and FBrR may be attractive bio-ingredients for usage in the cosmetic sector as cosmeceuticals.
  8. Chwan Chuong Chin JJ, Akbar MA, Mohd Yusof NY, Pike A, Goh CT, Mustapha S, et al.
    Chemosphere, 2024 Aug 20;364:143114.
    PMID: 39154772 DOI: 10.1016/j.chemosphere.2024.143114
    Yearly reports of detrimental effects resulting from harmful algal blooms (HAB) are still received in Malaysia and other countries, particularly concerning fish mortality and seafood contamination, both of which bear consequences for the fisheries industry. The underlying reason is the absence of a dependable early warning system. Hence, this research aims to develop a single DNA biosensor that can detect a group of HAB species known for producing saxitoxin (SXT), which is commonly found in Malaysian waters. The screen-printed carbon electrode (SPCE)-based DNA biosensor was fabricated by covalent grafting of the 3' aminated DNA probe of the sxtA4 conserved domain in SXT-producing dinoflagellates on the reverse-phase polymerized polyaniline/graphene (PGN) nanocomposite electrode via carbodiimide linkage. The introduction of a carboxyphenyl layer to the PGN nanotransducing element was essential to augment the carboxylic groups on the graphene (RGO), facilitating attachment with the aminated DNA. The synergistic effect of the asynthesized nanocomposite of PANI and RGO, tremendously enhanced the electron transfer rate of the ferri/ferrocyanide redox probe at the SPCE transducer surface, allowing for the label-free bioanalytical assay of complementary DNA targets. The developed DNA biosensor featuring the capacity to detect a broad range of Alexandrium minutum (A. minutum) cell concentrations, ranging from 10 to 10,000,000 cells L-1. The quantification of A. minutum cells from pure algal culture by the electrochemical DNA biosensor has been well-validated with traditional microscopic techniques. Furthermore, Alexandrium tamiyavanichii, another toxigenic HAB species, exhibited a similar electrochemical characteristic signal to those observed with A. minutum, whilst the biosensor yielded appreciably distinctive results when subjected to a non-toxigenic microalgae species as a negative control, i.e. Isochrysis galbana. A compendium DNA biosensor design and electrochemical detection strategy at laboratory scale serves as a precursor to the potential development of portable device for on-site detection, thus expanding the utility and scope of biosensor technology.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links