Displaying all 12 publications

Abstract:
Sort:
  1. Nasruddin NS, Azmai MN, Ismail A, Saad MZ, Daud HM, Zulkifli SZ
    ScientificWorldJournal, 2014;2014:312670.
    PMID: 25587561 DOI: 10.1155/2014/312670
    This study was conducted to record the histological features of the gastrointestinal tract of wild Indonesian shortfin eel, Anguilla bicolor bicolor (McClelland, 1844), captured in Peninsular Malaysia. The gastrointestinal tract was segmented into the oesophagus, stomach, and intestine. Then, the oesophagus was divided into five (first to fifth), the stomach into two (cardiac and pyloric), and the intestine into four segments (anterior, intermediate, posterior, and rectum) for histological examinations. The stomach had significantly taller villi and thicker inner circular muscles compared to the intestine and oesophagus. The lamina propria was thickest in stomach, significantly when compared with oesophagus, but not with the intestine. However, the intestine showed significantly thicker outer longitudinal muscle while gastric glands were observed only in the stomach. The histological features were closely associated with the functions of the different segments of the gastrointestinal tract. In conclusion, the histological features of the gastrointestinal tract of A. b. bicolor are consistent with the feeding habit of a carnivorous fish.
  2. Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, et al.
    BMC Vet Res, 2019 May 28;15(1):176.
    PMID: 31138199 DOI: 10.1186/s12917-019-1907-8
    BACKGROUND: Vibriosis is an important bacterial disease of cultured marine fishes worldwide. However, information on the virulence and antibiotic resistance of Vibrio spp. isolated from fish are scarce. This study investigates the distribution of virulence associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cage-cultured marine fishes in Malaysia.

    RESULTS: A total of 63 Vibrio spp. isolated from 62 cultured marine fishes in various geographical regions in Peninsular Malaysia were analysed. Forty-two of the isolates (66.7%) were positive for all chiA, luxR and vhpA, the virulence genes produced by pathogenic V. harveyi. A total of 62 Vibrio isolates (98%) had tlh gene of V. parahaemolyticus, while flaC gene of V. anguillarum was detected in 43 of isolates (68%). Other virulence genes, including tdh, trh, hlyA and toxRvc were absent from any of the isolates. Multiple antibiotic resistance (MAR) was exhibited in all strains of Harveyi clade, particularly against ampicillin, penicillin, polypeptides, cephems and streptomycin. The MAR index ranged between 0.06 and 0.56, and 75% of the isolates have MAR index of higher than 0.20. Host species and geographical origin showed no correlation with the presence of virulence genes and the antibiotic resistance patterns of Vibrio spp.

    CONCLUSIONS: The study indicates that majority of Vibrio spp. isolated from cultured marine fishes possess virulence genes, but were not associated with human pathogen. However, the antibiotics resistance is a real concern and warrants ongoing surveillance. These findings represent an updated knowledge on the risk of Vibrio spp. to human health, and also provides valuable insight on alternative approaches to combat vibriosis in cultured fish.

  3. Mazlan M, Khairani-Bejo S, Hamzah H, Nasruddin NS, Salleh A, Zamri-Saad M
    Vet Q, 2021 Dec;41(1):36-49.
    PMID: 33349157 DOI: 10.1080/01652176.2020.1867328
    BACKGROUND: Brucellosis of goats is caused by Brucella melitensis. It is a re-emerging zoonotic disease in many countries due to transmission from domestic animals and wildlife such as ibex, deer and wild buffaloes.

    OBJECTIVE: To describe the pathological changes, identification and distribution of B. melitensis in foetuses of experimentally infected does.

    METHODS: Twelve female goats of approximately 90 days pregnant were divided into 4 groups. Group 1 was exposed intra-conjunctival to 100 µL of sterile PBS while goats of Groups 2, 3 and 4 were similarly exposed to 100 µL of an inoculum containing 109 CFU/mL of live B. melitensis. Goats of these groups were killed at 15, 30 and 60 days post-inoculation, respectively. Foetal fluid and tissues were collected for bacterial identification (using direct bacterial culture, PCR and immuno-peroxidase staining) and histopathological examination.

    RESULTS: Bilateral intra-conjunctival exposure of pregnant does resulted in in-utero infection of the foetuses. All full-term foetuses of group 4 were either aborted or stillborn, showing petechiations of the skin or absence of hair coat with subcutaneous oedema. The internal organs showed most severe lesions. Immune-peroxidase staining revealed antigen distribution in all organs that became most extensive in group 4. Brucella melitensis was successfully isolated from the stomach content, foetal fluid and various other organs.

    CONCLUSION: Vertical transmission of caprine brucellosis was evident causing mild to moderate lesions in different organs. The samples of choice for isolation and identification of B. melitensis are stomach content as well as liver and spleen tissue.

  4. Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F
    PeerJ, 2022;10:e13356.
    PMID: 35529494 DOI: 10.7717/peerj.13356
    BACKGROUND: The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration.

    METHOD: In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation.

    RESULTS: MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p 

  5. Jayusman PA, Nasruddin NS, Baharin B, Ibrahim N', Ahmad Hairi H, Shuid AN
    Front Pharmacol, 2023;14:1120457.
    PMID: 36909165 DOI: 10.3389/fphar.2023.1120457
    Osteoporosis and periodontitis are two major chronic diseases of postmenopausal women. The association between these two diseases are evident through systemic bone loss and alveolar bone loss. Both postmenopausal osteoporosis and periodontitis impose a considerable personal and socioeconomic burden. Biphosphonate and hormone replacement therapy are effective in preventing bone loss in postmenopausal osteoporosis and periodontitis, but they are coupled with severe adverse effects. Phytoestrogens are plant-based estrogen-like compounds, which have been used for the treatment of menopause-related symptoms. In the last decades, numerous preclinical and clinical studies have been carried out to evaluate the therapeutic effects of phytoestrogens including bone health. The aim of this article is to give an overview of the bidirectional interrelationship between postmenopausal osteoporosis and periodontitis, summarize the skeletal effects of phytoestrogens and report the most studied phytoestrogens with promising alveolar bone protective effect in postmenopausal osteoporosis model, with and without experimental periodontitis. To date, there are limited studies on the effects of phytoestrogens on alveolar bone in postmenopausal osteoporosis. Phytoestrogens may have exerted their bone protective effect by inhibiting bone resorption and enhancing bone formation. With the reported findings on the protective effects of phytoestrogens on bone, well-designed trials are needed to better investigate their therapeutic effects. The compilation of outcomes presented in this review may provide an overview of the recent research findings in this field and direct further in vivo and clinical studies in the future.
  6. Jayusman PA, Nasruddin NS, Mahamad Apandi NI, Ibrahim N, Budin SB
    Front Pharmacol, 2022;13:847702.
    PMID: 35903322 DOI: 10.3389/fphar.2022.847702
    Periodontitis is an oral inflammatory process involving the periodontium, which is mainly caused by the invasion of periodontopathogenic microorganisms that results in gingival connective tissue and alveolar bone destruction. Metabolic products of the oral pathogens and the associated host immune and inflammatory responses triggered are responsible for the local tissue destruction. Numerous studies in the past decades have demonstrated that natural polyphenols are capable of modulating the host inflammatory responses by targeting multiple inflammatory components. The proposed mechanism by which polyphenolic compounds exert their great potential is by regulating the immune cell, proinflammatory cytokines synthesis and gene expression. However, due to its low absorption and bioavailability, the beneficial effects of these substances are very limited and it hampers their use as a therapeutic agent. To address these limitations, targeted delivery systems by nanoencapsulation techniques have been explored in recent years. Nanoencapsulation of polyphenolic compounds with different carriers is an efficient and promising approach to boost their bioavailability, increase the efficiency and reduce the degradability of natural polyphenols. In this review, we focus on the effects of different polyphenolic substances in periodontal inflammation and to explore the pharmaceutical significance of polyphenol-loaded nanoparticles in controlling periodontitis, which may be useful for further enhancement of their efficacy as therapeutic agents for periodontal disease.
  7. Mohd Fuad AS, Amran NA, Nasruddin NS, Burhanudin NA, Dashper S, Arzmi MH
    Probiotics Antimicrob Proteins, 2023 Oct;15(5):1298-1311.
    PMID: 36048406 DOI: 10.1007/s12602-022-09985-7
    Oral carcinogenesis is preceded by oral diseases associated with inflammation such as periodontitis and oral candidiasis, which are contributed by chronic alcoholism, smoking, poor oral hygiene, and microbial infections. Dysbiosis is an imbalance of microbial composition due to oral infection, which has been reported to contribute to oral carcinogenesis. Therefore, in this review, we summarised the role of probiotics, prebiotics, synbiotics, and postbiotics in promoting a balanced oral microbiome, which may prevent oral carcinogenesis due to oral infections. Probiotics have been shown to produce biofilm, which possesses antibacterial activity against oral pathogens. Meanwhile, prebiotics can support growth and increase the benefit of probiotics. In addition, postbiotics possess antibacterial, anticariogenic, and anticancer properties that potentially aid in oral cancer prevention and treatment. The use of probiotics, prebiotics, synbiotics, and postbiotics for oral cancer management is still limited despite their vast potential, thus, discovering their prospects could herald a novel approach to disease prevention and treatment while participating in combating antimicrobial resistance.
  8. Khuda F, Baharin B, Anuar NNM, Satimin BSF, Nasruddin NS
    J Vet Dent, 2024 Jan;41(1):49-57.
    PMID: 37259505 DOI: 10.1177/08987564231178459
    Induction of periodontal disease using the rat model is the preferred model for human periodontal disease studies that are related to gene expression, mechanisms of inflammatory regulation, microbial and host responses, resolution, and the healing process. There are 3 methods that are frequently used to induce periodontal disease, which are: ligature application, oral bacterial inoculation, and the lipopolysaccharide injection technique. In the ligature model, sterile non-absorbable sutures or orthodontic wires are widely used to induce local irritation and bacterial plaque accumulation. Secondly, mono and mixed cultures of periodontal bacteria are inoculated orally by gavage or topical application. Lastly, lipopolysaccharide extracted from pathogenic bacteria can be directly injected into the gingival sulcus to induce inflammation and stimulate osteoclastogenesis and alveolar bone loss. Among these methods, ligature application induces inflammation and alveolar bone resorption more promptly compared to other methods. This review will provide an overview of the main induction methods in experimental periodontal disease, with their advantages and disadvantages.
  9. Mohamad N, Mohd Roseli FA, Azmai MNA, Saad MZ, Md Yasin IS, Zulkiply NA, et al.
    J Aquat Anim Health, 2019 03;31(1):88-96.
    PMID: 30536485 DOI: 10.1002/aah.10055
    In September 2016, a marine fish farm operator in Selangor, Malaysia, reported a disease outbreak affecting juvenile hybrid groupers (Camouflage Grouper Epinephelus polyphekadion × Tiger Grouper E. fuscoguttatus). The average daily mortality was 120 fish, resulting in a cumulative mortality rate of 29% within 10 d. The affected hybrid groupers displayed lethargy, excessive mucus production, rotten fins, congestion of livers and kidneys, and enlargement of spleens. Microscopically, general congestion of the brains and internal organs was evident. Vibrio harveyi and V. alginolyticus were successfully isolated from the diseased fish. The isolated pathogens were found to be sensitive to oxytetracycline and tetracycline, but resistant towards ampicillin and vancomycin. Experimental infections using the isolated V. harveyi (108  CFU/mL), V. alginolyticus (108  CFU/mL), and concurrent infection by V. harveyi (108  CFU/mL) and V. alginolyticus (108  CFU/mL) in juvenile Asian Seabass Lates calcarifer resulted in 60, 100, and 100% mortality, respectively, within 240 h postinfection. The experimentally infected Asian Seabass demonstrated similar clinical signs and histopathological changes as the naturally infected hybrid groupers. However, concurrently infected fish demonstrated severe clinical signs and histopathological changes compared with single infections. These results suggest that both isolates of Vibrio are pathogenic to fish and responsible for the disease outbreak. However, concurrent infection involving V. alginolyticus and V. harveyi leads to a more devastating impact to the cultured fish. This is the first report of concurrent Vibrio infection in cultured marine fish in Malaysia.
  10. Pauzi NA, Mohamad N, Azzam-Sayuti M, Yasin ISM, Saad MZ, Nasruddin NS, et al.
    Vet World, 2020 Oct;13(10):2166-2171.
    PMID: 33281351 DOI: 10.14202/vetworld.2020.2166-2171
    Background and Aim: Aeromonas hydrophila is a major cause of bacterial infections affecting a wide range of warm water fishes worldwide. In Malaysia, A. hydrophila isolations from diseased fishes were previously reported; however, with limited information. The present study investigates the antibiotic susceptibility and pathogenicity of A. hydrophila isolated from farmed red hybrid tilapia (Oreochromis spp.) in Malaysia.

    Materials and Methods: A. hydrophila was biochemically identified and subjected to antibiotic susceptibility tests. The isolate was then intraperitoneally injected into red hybrid tilapia, and the mortality, clinicopathological changes, and LD50 were determined up to 240 h post-infection (hpi).

    Results: The isolate demonstrated multiple antibiotic resistances (MAR) toward amikacin, ampicillin, cefotaxime, amoxicillin, trimethoprim-sulfamethoxazole, erythromycin, and streptomycin, with a MAR index of 0.5. The experimental infection of A. hydrophila at 105 CFU/mL in the red hybrid tilapia resulted in 100% mortality at 240 hpi. The LD50 was determined at 1.1×104 CFU/mL. Infected fish demonstrated occasional erratic swimming patterns, localized hemorrhages and depigmentation on the body and operculum areas, fin erosion, enlargement of the gall bladder, and hemorrhage in internal organs. Microscopic observation of infected fish revealed brain congestion, tubular necrosis, and glomerular shrinkage in the kidneys, necrosis of hepatocytes, and congestion of blood vessels in the liver.

    Conclusion: The high virulence of A. hydrophila to the red hybrid tilapia emphasizes the importance of active, on-going monitoring of its prevalence in Malaysian tilapia farming.

  11. Amal MNA, Ismail A, Saad MZ, Md Yasin IS, Nasruddin NS, Mastor SS, et al.
    Microb Pathog, 2019 Jun;131:47-52.
    PMID: 30940607 DOI: 10.1016/j.micpath.2019.03.034
    This study determines the median lethal dose, and describes the clinico-pathological changes and disease development following Streptococcus agalactiae infection in Javanese medaka model. Javanese medakas were infected with S. agalactiae via intraperitoneal (IP) from 104 to 108 CFU/mL, and immersion (IM) route from 103 to 107 CFU/mL. The LD50-240h and clinico-pathological changes of the fish was determined until 240 h post infection (hpi). Next, the disease development was determined for 96 hpi in the fish following IP and IM infection at 103 CFU/mL and 104 CFU/mL, respectively. The LD50-240h of S. agalactiae in Javanese medaka was lower following IP injection (4.5 × 102 CFU/mL), compared to IM route (3.5 × 103 CFU/mL). The clinical signs included separating from the schooling group, swimming at the surface of water column, lethargy, erratic swimming pattern, corneal opacity and exophthalmia. Histopathological examinations revealed generalized congestion in almost all internal organs, particularly in liver and brain, while the kidney displayed tubular necrosis. Both IP and IM routes showed significant positive correlation (p 
  12. Abu Bakar N, Wan Ibrahim WN, Zulkiflli AR, Saleh Hodin NA, Kim TY, Ling YS, et al.
    Ecotoxicol Environ Saf, 2023 May;256:114862.
    PMID: 37004432 DOI: 10.1016/j.ecoenv.2023.114862
    The widespread presence of mercury, a heavy metal found in the environment and used in numerous industries and domestic, raises concerns about its potential impact on human health. Nevertheless, the adverse effects of this environmental toxicant at low concentrations are often underestimated. There are emerging studies showing that accumulation of mercury in the eye may contribute to visual impairment and a comorbidity between autism spectrum disorders (ASD) trait and visual impairment. However, the underlying mechanism of visual impairment in humans and rodents is challenging. In response to this issue, zebrafish larvae with a cone-dominated retinal visual system were exposed to 100 nM mercury chloride (HgCl2), according to our previous study, followed by light-dark stimulation, a social assay, and color preference to examine the functionality of the visual system in relation to ASD-like behavior. Exposure of embryos to HgCl2 from gastrulation to hatching increased locomotor activity in the dark, reduced shoaling and exploratory behavior, and impaired color preference. Defects in microridges as the first barrier may serve as primary tools for HgCl2 toxicity affecting vision. Depletion of polyunsaturated fatty acids (PUFAs), linoleic acid, arachidonic acid (ARA), alpha-linoleic acid, docosahexaenoic acid (DHA), stearic acid, L-phenylalanine, isoleucine, L-lysine, and N-acetylputrescine, along with the increase of gamma-aminobutyric acid (GABA), sphingosine-1-phosphate, and citrulline assayed by liquid chromatography-mass spectrometry (LC-MS) suggest that these metabolites serve as biomarkers of retinal impairments that affect vision and behavior. Although suppression of adsl, shank3a, tsc1b, and nrxn1a gene expression was observed, among these tsc1b showed more positive correlation with ASD. Collectively, these results contribute new insights into the possible mechanism of mercury toxicity give rise to visual, cognitive, and social deficits in zebrafish.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links