Displaying all 11 publications

Abstract:
Sort:
  1. Sandikapura MJ, Nyamathulla S, Noordin MI
    Pak J Pharm Sci, 2018 Mar;31(2(Suppl.)):623-635.
    PMID: 29625934
    The study was aimed to perform aqueous extraction of two plants using different extraction methods, and evaluate their antioxidant and antidiabetic potential. Plant materials were extracted by maceration, soxhlet, sonication and fresh juice methods to produce aqueous extracts. In vitro antioxidant DPPH (1,1-diphenyl-2- picrylhydrazyl) and FRAP (Ferric reducing antioxidant power), antidiabetic α-amylase and α-glucosidase enzyme inhibitory assays were carried out on the extracts. Extracts of Syzygium polyanthum demonstrated better free radical scavenging and antidiabetic activity than Momordica charantia. It was observed that the % inhibition of DPPH by fresh juice of S. polyanthum was 64.93 similar to quercetin 69.21 (p>0.05). Its FRAP value (69.05) was significantly (p<0.05) higher than Quercetin (63.27). Its fresh juice alsodemonstrated significant inhibitory actions (p<0.05) against α-amylase (92.21%) and α-glucosidase (96.06%) than acarbose. It is concluded that extracts had varied results due to differences in their chemical composition as noticed in LC-MS. The fresh juice of S. polyanthum has superior in vitro antioxidant and antidiabetic activities. Therefore, intake of exogenous antioxidants in the form of fresh juices of someherbs can help the body toscavenge free radicals and exert hyperglycaemic control in post prandial hyperglycaemia.
  2. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N
    Drug Des Devel Ther, 2018;12:657-671.
    PMID: 29636600 DOI: 10.2147/DDDT.S155115
    Background: Brucea javanica (L.) Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells.

    Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis.

    Methods: 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.

    Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events.

    Conclusion: From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.

  3. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen NA
    RSC Adv, 2018 Jan 02;8(2):681-689.
    PMID: 35538944 DOI: 10.1039/c7ra09618f
    Brucea javanica (L.) Merr. is a well-known plant in Chinese System of Medicine. Its fruits and seeds have been reported to possess curative properties against various ailments. The chemical constituents and biological activity of this plant have been an interesting area in plant and chemistry medicine. The aim of this study is to evaluate the antiproliferative effects of the B. javanica extract against a colon cancer cell line and identification of the chemical components derived from the extract. An ethanolic extract from B. javanica fruits was prepared by cold maceration method, subjected to LC-MS profiling to elucidate the composition abbreviated as BJEE. The extract was screened for the cytotoxicity effects on HCT-116 colon cancer cells via MTT and LDH methods. Additionally, AO/PI staining verified apoptosis features in HCT-116 cells through microscopic analysis. ROS, caspase activity, and gene expression has been performed to identify its possible mechanism of actions which contribute to apoptosis. Output data from this study showed BJEE inhibited the cell proliferation of HCT-116 colon cancer cells at IC50 value of 8.9 ± 1.32 (μg mL-1) and significantly increased the levels of caspase-8, 9, and 3/7 in treated cells in comparison to untreated. The changes in expression of caspase genes and some apoptosis genes like Bax and Bcl-2 were confirmed using RT-PCR. Phytochemical analysis by LC-MS identified six major active compounds (bruceine D, isobrucein A, quassimarin, C16 sphinganine, phytosphingosine, and enigmol) in BJEE that may play a key role in cell apoptosis. The current study showed BJEE could be a promising agent for colorectal cancer therapy by significant increase in caspase activity level, and up-regulation of the specific apoptotic genes.
  4. Razavi M, Nyamathulla S, Karimian H, Noordin MI
    Drug Des Devel Ther, 2014;8:1315-29.
    PMID: 25246773 DOI: 10.2147/DDDT.S68517
    This study aimed to develop hydrophilic, gastroretentive matrix tablets of famotidine with good floating and swelling properties. A novel gastroretentive drug delivery formulation was designed using salep, also known as salepi, a flour obtained from grinding dried palmate tubers of Orchis morio var mascula (Orchidaceae family). The main polysaccharide content of salep is glucomannan, highly soluble in cold and hot water, which forms a viscous solution. Salep was characterized for physicochemical properties, thermal stability, chemical interaction, and surface morphology using X-ray diffraction analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Ten different formulations (S1-S10) were prepared using famotidine to salep ratios from 1:0.5 to 1:5. Results demonstrated that all formulations were able to sustain the drug release for more than 24 hours. The S5 formulation, with a famotidine to salep ratio of 1:2.5, had the shortest floating lag time of 35 seconds and 100% drug release within 24 hours. The dissolution data were fitted into popular mathematical models to assess the mechanism of drug release. S5 showed Zero order release (R=0.9746) with Higuchi diffusion (R=0.9428). We conclude that salep, a novel polymer, can be used in controlled release formulations to sustain release for 24 hours, due to inherent swelling and gelling properties.
  5. Razavi M, Nyamathulla S, Karimian H, Moghadamtousi SZ, Noordin MI
    Molecules, 2014;19(9):13909-31.
    PMID: 25197930 DOI: 10.3390/molecules190913909
    The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP 6) and TSP (TSP1 to TSP 6) series were prepared using tamarind powder:xanthan in the ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5, respectively. The matrix tablets were prepared by the wet granulation method and evaluated for pharmacopoeial requirements. TKP2 was the optimum formulation as it had a short floating lag time (FLT<30 s) and more than 98.5% drug release in 12 h. The dissolution data were fitted to popular mathematical models to assess the mechanism of drug release, and the optimum formulation showed a predominant first order release and diffusion mechanism. It was concluded that the TKP2 prepared using tamarind kernel powder:xanthan (4:1) was the optimum formulation with shortest floating lag time and more than 90% release in the determined period of time.
  6. Tan NAS, Giribabu N, Karim K, Nyamathulla S, Salleh N
    J Ethnopharmacol, 2019 May 23;236:9-20.
    PMID: 30771519 DOI: 10.1016/j.jep.2019.02.027
    ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (MP) (Kacip Fatimah) is used to maintain the well-being of post-menopausal women. However, its role in ameliorating post menopause-related vaginal atrophy (VA) is unknown.

    AIMS: To investigate the ability of intravaginal MP gel treatment to ameliorate VA in sex-steroid deficient condition, mimicking post-menopause.

    METHODS: Ovariectomized female Sprague-Dawley rats received MP (100 μg/ml, 250 μg/ml and 500 μg/ml) and estriol (E) gels intravaginally for seven consecutive days. Rats were then euthanized and vagina was harvested and subjected for histological and protein expression and distribution analyses. Vaginal ultrastructure was observed by transmission electron microscopy (TEM).

    RESULTS: Thickness of vaginal epithelium increased with increasing intravaginal MP doses. Additionally, increased in expression and distribution of proliferative protein i.e. PCNA, tight junction protein i.e. occludin, water channel proteins i.e. AQP-1 and AQP-2 and proton extruder protein i.e. V-ATPase A1 were observed in the vagina following intravaginal MP and E gels treatment. Intravaginal MP and E gels also induced desmosome formation and approximation of the intercellular spaces between the vaginal epithelium.

    CONCLUSIONS: Intravaginal MP was able to ameliorate features associated with VA; thus, it has potential to be used as an agent to treat this condition.

  7. Razavi M, Karimian H, Yeong CH, Chung LY, Nyamathulla S, Noordin MI
    Drug Des Devel Ther, 2015;9:4373-86.
    PMID: 26273196 DOI: 10.2147/DDDT.S86263
    The present research was aimed at formulating a metformin HCl sustained-release formulation from a combination of polymers, using the wet granulation technique. A total of 16 formulations (F1-F16) were produced using different combinations of the gel-forming polymers: tamarind kernel powder, salep (palmate tubers of Orchis morio), and xanthan. Post-compression studies showed that there were no interactions between the active drug and the polymers. Results of in vitro drug-release studies indicated that the F10 formulation which contained 5 mg of tamarind kernel powder, 33.33 mg of xanthan, and 61.67 mg of salep could sustain a 95% release in 12 hours. The results also showed that F2 had a 55% similarity factor with the commercial formulation (C-ER), and the release kinetics were explained with zero order and Higuchi models. The in vivo study was performed in New Zealand White rabbits by gamma scintigraphy; the F10 formulation was radiolabeled using samarium (III) oxide ((153)Sm2O3) to trace transit of the tablets in the gastrointestinal tract. The in vivo data supported the retention of F10 formulation in the gastric region for 12 hours. In conclusion, the use of a combination of polymers in this study helped to develop an optimal gastroretentive drug-delivery system with improved bioavailability, swelling, and floating characteristics.
  8. Razavi M, Karimian H, Yeong CH, Sarji SA, Chung LY, Nyamathulla S, et al.
    Drug Des Devel Ther, 2015;9:3125-39.
    PMID: 26124637 DOI: 10.2147/DDDT.S82935
    The purpose of this study is to evaluate the in vitro and in vivo performance of gastro-retentive matrix tablets having Metformin HCl as model drug and combination of natural polymers. A total of 16 formulations were prepared by a wet granulation method using xanthan, tamarind seed powder, tamarind kernel powder and salep as the gel-forming agents and sodium bicarbonate as a gas-forming agent. All the formulations were evaluated for compendial and non-compendial tests and in vitro study was carried out on a USP-II dissolution apparatus at a paddle speed of 50 rpm. MOX2 formulation, composed of salep and xanthan in the ratio of 4:1 with 96.9% release, was considered as the optimum formulation with more than 90% release in 12 hours and short floating lag time. In vivo study was carried out using gamma scintigraphy in New Zealand White rabbits, optimized formulation was incorporated with 10 mg of (153)Sm for labeling MOX2 formulation. The radioactive samarium oxide was used as the marker to trace transit of the tablets in the gastrointestinal tract. The in vivo data also supported retention of MOX2 formulation in the gastric region for 12 hours and were different from the control formulation without a gas and gel forming agent. It was concluded that the prepared floating gastro-retentive matrix tablets had a sustained-release effect in vitro and in vivo, gamma scintigraphy played an important role in locating the oral transit and the drug-release pattern.
  9. Subramaniam B, Arshad NM, Malagobadan S, Misran M, Nyamathulla S, Mun KS, et al.
    Pharmaceutics, 2021 Mar 24;13(4).
    PMID: 33804975 DOI: 10.3390/pharmaceutics13040439
    1'-acetoxychavicol acetate (ACA) extracted from the rhizomes of Alpinia conchigera Griff (Zingiberaceae) has been shown to deregulate the NF-ĸB signaling pathway and induce apoptosis-mediated cell death in many cancer types. However, ACA is a hydrophobic ester, with poor solubility in an aqueous medium, limited bioavailability, and nonspecific targeting in vivo. To address these problems, ACA was encapsulated in a nanostructured lipid carrier (NLC) anchored with plerixafor octahydrochloride (AMD3100) to promote targeted delivery towards C-X-C chemokine receptor type 4 (CXCR4)-expressing prostate cancer cells. The NLC was prepared using the melt and high sheer homogenization method, and it exhibited ideal physico-chemical properties, successful encapsulation and modification, and sustained rate of drug release. Furthermore, it demonstrated time-based and improved cellular uptake, and improved cytotoxic and anti-metastatic properties on PC-3 cells in vitro. Additionally, the in vivo animal tumor model revealed significant anti-tumor efficacy and reduction in pro-tumorigenic markers in comparison to the placebo, without affecting the weight and physiological states of the nude mice. Overall, ACA-loaded NLC with AMD3100 surface modification was successfully prepared with evidence of substantial anti-cancer efficacy. These results suggest the potential use of AMD3100-modified NLCs as a targeting carrier for cytotoxic drugs towards CXCR4-expressing cancer cells.
  10. Abdalla YOA, Nyamathulla S, Shamsuddin N, Arshad NM, Mun KS, Awang K, et al.
    Toxicol Appl Pharmacol, 2018 10 01;356:204-213.
    PMID: 30138658 DOI: 10.1016/j.taap.2018.08.014
    1'-S-1'-acetoxychavicol acetate (ACA) has been previously reported to reduce tumor volume in nude mice, at an effective dose of 1.56 mg/kg body weight. However, the detailed toxicological profile for ACA has not yet been performed. Herein, we investigated the toxicity of intravenous administration of ACA in male and female Sprague-Dawley rats, both acutely (with single doses of 2.00, 4.00 and 6.66 mg/kg body weight, for 14 days), and sub-acutely (with weekly injections of 0.66, 1.33, and 2.22 mg/kg, for 28 days). In both toxicity studies, treatment with ACA did not affect behavior, food/water intake or body weight, nor did it induce any changes in clinically relevant hematological and biochemical parameters or mortality, suggesting that the LD50 of ACA was higher than 6.66 mg/kg body weight, regardless of sex. Sub-acutely, there was however, mild focal inflammation of kidneys and lobular hepatitis, but these were not associated with significant functional adverse effects. Therefore, the no-observed-adverse-effect level (NOAEL) for intravenous administration of ACA in the present 28-day sub-acute study was 2.22 mg/kg body weight, in both male and female rats. These findings provide useful information regarding the safety of ACA use in a healthy, non-tumor-bearing rat model.
  11. Vendidandala NR, Yin TP, Nelli G, Pasupuleti VR, Nyamathulla S, Mokhtar SI
    Life Sci, 2021 Dec 01;286:120019.
    PMID: 34624322 DOI: 10.1016/j.lfs.2021.120019
    This study is designed to investigate the combination of gallocatechin (GC) and silver nanoparticles (AgNPs) for its wound healing ability in diabetic rats. Thirty male Sprague Dawley rats were randomly divided into 5 groups: 1. Normal control rats dressed with blank CGP1; 2. Diabetic rats dressed with blank CGP1; 3. Diabetic rats dressed with 13.06μM of GC; 4. Diabetic rats dressed with 26.12 μM of GC; 5. Diabetic rats dressed with 0.1% silver sulfadiazine patches. GC-AgNPs-CGP dressed diabetic rats showed significant FBG reduction, prevented the body weight losses and reduced the oxidative stress by lowering MDA content and elevated antioxidant enzymes such as SOD, CAT and GPx in wound healing skin of diabetic rats when compared to normal CGP. Besides, mRNA expression of Nrf2, Nqo-1, and Ho-1 was upregulated with downregulated expression of Keap-1 mRNA, which is supported by immunohistochemistry. Furthermore, GC-AgNPs-CGP dressing increased growth factors such as VEGF, EGF, TGF-β, and FGF-2 while decreasing MMP-2 in the skin of diabetic wound rats. In vitro permeation study demonstrated rapid GC release and permeation with a flux of 0.061 and 0.143 mg/sq.cm/h. In conclusion, the results indicated that GC-AgNPs-CGP dressing on diabetic wound rats modulated oxidative stress and inflammation with elevated growth factors; increased collagen synthesis thereby significantly improved the wound healing and could be beneficial for the management of diabetic wounds.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links