METHODS: The inclusion criteria were normal term neonates (gestation ≥ 37 weeks). Parents/care-givers were interviewed to obtain data on demography, clinical problems, feeding practice and age when first TSB was measured. Polymerase chain reaction-restriction fragment length polymorphism method was used to detect common G6PD, UGT1A1 and SLCO1B1 variants on each neonate's dry blood specimens.
RESULTS: Of 1121 jaundiced neonates recruited, 232 had SNH. Logistic regression analysis showed that age (in days) when first TSB was measured [adjusted odds ratio (aOR) = 1.395; 95% confidence interval (CI) 1.094-1.779], age (in days) of admission (aOR = 1.127; 95% CI 1.007-1.260) and genetic mutant UGT1A1 promoter A(TA)7TAA (aOR = 4.900; 95% CI 3.103-7.739), UGT1A1 c.686C>A (aOR = 6.095; 95% CI 1.549-23.985), SLCO1B1 c.388G>A (aOR = 1.807; 95% CI 1.242-2.629) and G6PD variants and/or abnormal G6PD screening test (aOR = 2.077; 95% CI 1.025-4.209) were significantly associated with SNH.
CONCLUSION: Genetic predisposition, and delayed measuring first TSB and commencing phototherapy increased risk of SNH.
MATERIALS AND METHODS: The inclusion criteria were normal term-gestation neonates admitted consecutively for phototherapy. PCR-restriction fragment length polymorphism method was applied on DNA extracted from dry blood spot specimens of each neonate to detect for Hb CoSp and Hb Adana gene. Positive samples were verified by gene sequencing.
RESULTS: Of the 1121 neonates recruited (719 SigNH and 402 no-SigNH), heterozygous Hb CoSp gene was detected in only two (0.27%) neonates. Both were SigNH neonates (0.3% or 2/719). No neonate had Hb Adana variant.
CONCLUSION: Hb CoSp was not common but could be a risk factor associated with SigNH. No Hb Adana was detected.
METHODS: Pressurized hot water extraction P. tenellus was carried out and standardized to 7.9% hydrosable tannins. In vitro toxicity of the extract was tested on NIH 3 T3 cell by MTT assay. The cellular antioxidant level was quantified by measuring cellular level of glutathione. Oral sub-chronic toxicity (200, 1000 and 3000 mg/kg body weight) of P. tenellus extract were evaluated on healthy mice. Liver and kidney antioxidant level was quantified by measuring levels of Ferric Reducing Antioxidant Potential (FRAP), superoxide dismutase, glutathione.
RESULTS: The P. tenellus extract did not induce cytotoxicity on murine NIH 3 T3 cells up to 200 μg/mL for 48 h. Besides, level of glutathione was higher in the extract treated NIH 3 T3 cells. P. tenellus extract did not cause mortality at all tested concentration. When treated with 1000 mg/kg of the extract, serum liver enzymes (ALP and ALT) and LDH were lower than normal control and mice treated with 200 mg/kg of extract. Moreover, SOD, FRAP and glutathione levels of liver of the mice treated with 200 and 1000 mg/kg of extract were higher than the normal control mice. On the other hand, when treated with 3000 mg/kg of extract, serum liver enzymes (ALP and ALT) and LDH were higher than normal mice without changing the liver SOD and glutathione level, which may contribute to the histological sign of ballooning hepatocyte.
CONCLUSION: P. tenellus extract standardized with 7.9% hydrosable tannins and their catabolites increased the antioxidant levels while reducing the nitric oxide levels in both liver and kidney without causing any acute and sub-chronic toxicity in the mice.