Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Lalani S, Poh CL
    Viruses, 2020 Jun 30;12(7).
    PMID: 32630136 DOI: 10.3390/v12070712
    We have recently been made aware by Mr. Saravanan (National University of Singapore) thatthe structure of prunin flavonoid used in their study was different to the one that we reported [...].
  2. Poh CL, Lalani S
    Vitam Horm, 2021;117:17-46.
    PMID: 34420580 DOI: 10.1016/bs.vh.2021.06.008
    The emergence and re-emergence of viral pathogens capable of causing epidemics or pandemics pose a serious healthcare burden. Small molecule antivirals used in conventional therapy have given rise to the severe problem of viral resistance against them. Peptides are generally considered safe, effective and are less likely to induce viral resistance. Antiviral peptides can be identified from screening of phage display of combinational peptide libraries, peptide array libraries or designed against viral targets. Limitations of peptides such as bioavailability can be improved with chemical modifications. Nanotechnology can further improve the stability of peptides in systemic circulation and enhance the antiviral activity of peptides, making them an appealing therapeutic option.
  3. Ahmad Z, Poh CL
    Int J Med Sci, 2019;16(3):355-365.
    PMID: 30911269 DOI: 10.7150/ijms.29938
    Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus in vitro and/or in vivo have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.
  4. Lalani S, Poh CL
    Viruses, 2020 02 06;12(2).
    PMID: 32041232 DOI: 10.3390/v12020184
    Flavonoids are natural biomolecules that are known to be effective antivirals. These biomolecules can act at different stages of viral infection, particularly at the molecular level to inhibit viral growth. Enterovirus A71 (EV-A71), a non-enveloped RNA virus, is one of the causative agents of hand, foot and mouth disease (HFMD), which is prevalent in Asia. Despite much effort, no clinically approved antiviral treatment is available for children suffering from HFMD. Flavonoids from plants serve as a vast reservoir of therapeutically active constituents that have been explored as potential antiviral candidates against RNA and DNA viruses. Here, we reviewed flavonoids as evidence-based natural sources of antivirals against non-picornaviruses and picornaviruses. The detailed molecular mechanisms involved in the inhibition of EV-A71 infections are discussed.
  5. Khalid K, Poh CL
    Adv Med Sci, 2023 Sep;68(2):213-226.
    PMID: 37364379 DOI: 10.1016/j.advms.2023.05.003
    BACKGROUND: The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19.

    METHODS: PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023.

    RESULTS: A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems.

    CONCLUSIONS: The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.

  6. Yee PT, Poh CL
    Viruses, 2015 Dec 30;8(1).
    PMID: 26729152 DOI: 10.3390/v8010001
    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.
  7. Poh CL, Tan EL
    Methods Mol Biol, 2011;665:65-77.
    PMID: 21116796 DOI: 10.1007/978-1-60761-817-1_5
    Enteroviruses are positive stranded RNA viruses belonging to the genus Enterovirus of the Picornaviridae family. Human enteroviruses are transmitted through the fecal-oral route and have been shown to cause mild to life-threatening diseases. Various diagnostic methods have been developed to detect enteroviruses from clinical specimens but many were impeded by requirements for special reagents, lengthy procedures, low sensitivity or cross-reactivity. This chapter describes rapid and highly sensitive methods of enteroviral detection directly from clinical specimens based on a conventional one-step Reverse Transcription polymerase chain reaction (RT-PCR) and a one-step real-time RT-PCR.
  8. Anasir MI, Poh CL
    Int J Mol Sci, 2019 Mar 13;20(6).
    PMID: 30871133 DOI: 10.3390/ijms20061256
    Hand, foot, and mouth disease (HFMD) commonly produces herpangina, but fatal neurological complications have been observed in children. Enterovirus 71 (EV-A71) and Coxsackievirus 16 (CV-A16) are the predominant viruses causing HFMD worldwide. With rising concern about HFMD outbreaks, there is a need for an effective vaccine against EV-A71 and CV-A16. Although an inactivated vaccine has been developed against EV-A71 in China, the inability of the inactivated vaccine to confer protection against CV-A16 infection and other HFMD etiological agents, such as CV-A6 and CV-A10, necessitates the exploration of other vaccine platforms. Thus, the antigenic peptide-based vaccines are promising platforms to develop safe and efficacious multivalent vaccines, while the monoclonal antibodies are viable therapeutic and prophylactic agents against HFMD etiological agents. This article reviews the available information related to the antigenic peptides of the etiological agents of HFMD and their neutralizing antibodies that can provide a basis for the design of future therapies against HFMD etiological agents.
  9. Anasir MI, Poh CL
    Front Microbiol, 2019;10:738.
    PMID: 31040832 DOI: 10.3389/fmicb.2019.00738
    Although vaccines have proven pivotal against arrays of infectious viral diseases, there are still no effective vaccines against many viruses. New structural insights into the viral envelope, protein conformation, and antigenic epitopes can guide the design of novel vaccines against challenging viruses such as human immunodeficiency virus (HIV), hepatitis C virus, enterovirus A71, and dengue virus. Recent studies demonstrated that applications of this structural information can solve some of the vaccine conundrums. This review focuses on recent advances in structure-based vaccine design, or structural vaccinology, for novel and innovative viral vaccine design.
  10. Mandary MB, Poh CL
    Viruses, 2018 06 12;10(6).
    PMID: 29895721 DOI: 10.3390/v10060320
    Enterovirus 71 (EV-A71) is a major etiological agent of hand, foot and mouth disease (HFMD) that mainly affects young children less than five years old. The onset of severe HFMD is due to neurological complications bringing about acute flaccid paralysis and pulmonary oedema. In this review, we address how genetic events such as recombination and spontaneous mutations could change the genomic organization of EV-A71, leading to an impact on viral virulence. An understanding of the recombination mechanism of the poliovirus and non-polio enteroviruses will provide further evidence of the emergence of novel strains responsible for fatal HFMD outbreaks. We aim to see if the virulence of EV-A71 is contributed solely by the presence of fatal strains or is due to the co-operation of quasispecies within a viral population. The phenomenon of quasispecies within the poliovirus is discussed to reflect viral fitness, virulence and its implications for EV-A71. Ultimately, this review gives an insight into the evolution patterns of EV-A71 by looking into its recombination history and how spontaneous mutations would affect its virulence.
  11. Yee PTI, Poh CL
    Int J Med Sci, 2018;15(11):1143-1152.
    PMID: 30123051 DOI: 10.7150/ijms.26450
    Enterovirus 71 (EV-A71) is one of the major pathogens causing hand, foot and mouth disease (HFMD). Some strains can lead to neurological disease and fatality in children. Up to date, there is no FDA-approved vaccine to prevent severe HFMD and mortality. Although the inactivated vaccine has advanced to production in China, lack of long-term protection and the requirement of multiple boosters have necessitated the development of other types of vaccines. Recent studies indicate that cellular and not humoral immunity determines the clinical outcome of EV-A71 infections. High levels of cytokines such as IL-1β, IL-6, IL-10 and IFN-γ tend to correlate with clinical severity in patients with pulmonary edema and encephalitis. The live attenuated vaccine may serve as the preferred choice as it can induce excellent humoral and cellular immunity as well as live-long immunity. Expression of certain HLA alleles such as TNF-α promoter type II (-308 allele), HLA-A33 and HLA-DR17 responses have been linked to severe HFMD. However, the high variability of MHC genes could restrict T cell recognition and be a major obstacle in the design of peptide vaccines. Hence, the development of a T cell universal vaccine (incorporating both CD4+ and CD8+ T cell epitopes) that induces broad, multifunctional and cross-reactive CD8+ T cell responses maybe desirable.
  12. Jazayeri SD, Poh CL
    Vet Res, 2019 Oct 10;50(1):78.
    PMID: 31601266 DOI: 10.1186/s13567-019-0698-z
    Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune responses and provide protection from challenges in different animal models. Although DNA vaccines offer advantages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA vaccines against avian pathogens.
  13. Lim HX, Poh CL
    Ther Adv Vaccines Immunother, 2019;7:2515135519888998.
    PMID: 31799495 DOI: 10.1177/2515135519888998
    Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot and mouth disease (HFMD) in the world, infecting mostly infants and young children (<5 years of age) in Asia. Approximately 2 million cases of HFMD were reported in China each year, of which approximately 45-50% were due to EV-A71. Most of the HFMD infections caused by EV-A71 usually result in mild symptoms with rashes and ulcers in the mouth. However, virulent strains of EV-A71 can infect the central nervous system and cause severe neurologic diseases, leading to reduced cognitive ability, acute flaccid paralysis and death. The lack of understanding of cellular immunity for long-term protection from the HFMD disease represents a major obstacle for vaccine development. In particular, the role of innate and T cell immunity during HFMD infection remains unclear and there is evidence suggesting the importance of CD4+ and CD8+ T cells for protective immunity. Currently, no US FDA-approved vaccine is available for EV-A71. Although the inactivated vaccines produced in China are highly effective (vaccine efficacy >95%), they lack the cellular immunity required for long-term protection. In this review, we discuss the findings that support the protective roles of innate and T cell immunity against EV-A71 infection, which will provide the knowledge needed for the urgent development of efficacious vaccines that will confer long-term protection.
  14. Abd-Aziz N, Poh CL
    Transl Res, 2021 11;237:98-123.
    PMID: 33905949 DOI: 10.1016/j.trsl.2021.04.008
    Oncolytic virotherapy is a therapeutic approach that uses replication-competent viruses to kill cancers. The ability of oncolytic viruses to selectively replicate in cancer cells leads to direct cell lysis and induction of anticancer immune response. Like other anticancer therapies, oncolytic virotherapy has several limitations such as viral delivery to the target, penetration into the tumor mass, and antiviral immune responses. This review provides an insight into the different characteristics of oncolytic viruses (natural and genetically modified) that contribute to effective applications of oncolytic virotherapy in preclinical and clinical trials, and strategies to overcome the limitations. The potential of oncolytic virotherapy combining with other conventional treatments or cancer immunotherapies involving immune checkpoint inhibitors and CAR-T therapy could form part of future multimodality treatment strategies.
  15. Yee PT, Poh CL
    Curr Pharm Des, 2016;22(44):6694-6700.
    PMID: 27510488 DOI: 10.2174/1381612822666160720165613
    The Hand, Foot and Mouth Disease (HFMD) is caused by Enterovirus 71 (EV-A71) and Coxsackieviruses. Common HFMD symptoms are high fever (≥ 39°C), rashes, and ulcers but complications due to virulent EV-A71 may arise leading to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents. Recent studies have reported the emergence of novel antiviral agents and vaccines that utilize microRNAs (miRNAs). They belong to a class of small (19-24 nt) non coding RNA molecules. As miRNAs play a major role in the host regulatory system, there is a huge opportunity for interplay between host miRNAs and EV-A71 expressions. A total of 42 out of 64 miRNAs were up-regulated in EV-A71-infected cells. There was consistent up-regulation of miR-1246 gene expression that targeted the DLG3 gene which contributes to neurological pathogenesis. In contrast, miR-30a that targets calcium channels for membrane transportation was down-regulated. This leads to repression of EV-A71 replication. The impact of host miRNAs on immune activation, shutdown of host protein synthesis, apoptosis, signal transduction and viral replication are discussed. miRNAs have been used in the construction of live attenuated vaccines (LAV) such as the poliovirus LAV that has miRNA binding sites for let-7a or miR-124a. The miRNAbearing vaccine will not replicate in neuronal cells carrying the corresponding miRNA but could still replicate in the gastrointestinal tract and hence remains to act as immunogens. As such, miRNAs are attractive candidates to be developed as vaccines and antivirals.
  16. Lee MF, Poh CL
    Pharm Res, 2023 Mar;40(3):617-632.
    PMID: 36869247 DOI: 10.1007/s11095-023-03486-0
    Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
  17. Singh S, Poh CL, Chow VT
    Microbiol. Immunol., 2002;46(11):801-8.
    PMID: 12516778
    Enterovirus 71 (EV71) is a major aetiological agent of hand, foot and mouth disease (HFMD). In recent years, several outbreaks in East Asia were associated with neurological complications and numerous deaths. An outbreak in Singapore in October 2000 afflicted thousands of children, resulting in four fatal cases from three of whom EV71 was isolated. The genomes of two representative EV71 strains isolated from a fatal case and a surviving patient were completely sequenced, and their nucleotide and amino acid sequences compared with known EV71 strains. The two outbreak strains were classified under genogroup B, together with those previously isolated in Singapore, Malaysia and Japan. Comparative sequence analysis of the two Singapore strains revealed 99% nucleotide similarity, while their deduced amino acid sequences were almost identical except for residue 1506 in the 3A non-structural region. Given that the outbreak involved closely related genetic variants of EV71, the broad spectrum of disease severity may be attributed to critical factors such as varying viral inoculation doses or differing host immune responses following infection, but is less likely to be due to the emergence of EV71 strains with heightened virulence.
  18. Abd-Aziz N, Kamaruzman NI, Poh CL
    J Oncol, 2020;2020:8029721.
    PMID: 32733559 DOI: 10.1155/2020/8029721
    MicroRNAs (miRNAs) are small noncoding RNAs that function at the posttranscriptional level in the cellular regulation process. miRNA expression exerts vital effects on cell growth such as cell proliferation and survival. In cancers, miRNAs have been shown to initiate carcinogenesis, where overexpression of oncogenic miRNAs (oncomiRs) or reduced expression of tumor suppressor miRNAs has been reported. In this review, we discuss the involvement of miRNAs in tumorigenesis, the role of synthetic miRNAs as either mimics or antagomirs to overcome cancer growth, miRNA delivery, and approaches to enhance their therapeutic potentials.
  19. Lalani S, Gew LT, Poh CL
    Peptides, 2021 Feb;136:170443.
    PMID: 33171280 DOI: 10.1016/j.peptides.2020.170443
    The emergence of new and resistant viruses is a serious global burden. Conventional antiviral therapy with small molecules has led to the development of resistant mutants. In the case of hand, foot and mouth disease (HFMD), the absence of a US-FDA approved vaccine calls for urgent need to develop an antiviral that could serve as a safe, potent and robust therapy against the neurovirulent Enterovirus A71 (EV-A71). Natural peptides such as lactoferrin, melittin and synthetic peptides such as SP40, RGDS and LVLQTM have been studied against EV-A71 and have shown promising results as potent antivirals in pre-clinical studies. Peptides are considered safe, efficacious and pose fewer chances of resistance. Poor pharmacokinetic features of peptides can be overcome by the use of chemical modifications to improve in vivo delivery particularly by oral route. The use of nanotechnology can remarkably assist in the oral delivery of peptides and enhance stability in vivo. This can greatly increase patient compliance and make it more attractive as antiviral therapy.
  20. Anasir MI, Ramanathan B, Poh CL
    Viruses, 2020 03 26;12(4).
    PMID: 32225021 DOI: 10.3390/v12040367
    Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links