Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Bt Hj Idrus R, Abas A, Ab Rahim F, Saim AB
    Tissue Eng Part A, 2015 Dec;21(23-24):2812-6.
    PMID: 26192075 DOI: 10.1089/ten.TEA.2014.0521
    With the worldwide growth of cell and tissue therapy (CTT) in treating diseases, the need of a standardized regulatory policy is of paramount concern. Research in CTT in Malaysia has reached stages of clinical trials and commercialization. In Malaysia, the regulation of CTT is under the purview of the National Pharmaceutical Control Bureau (NPCB), Ministry of Health (MOH). NPCB is given the task of regulating CTT, under a new Cell and Gene Therapy Products framework, and the guidelines are currently being formulated. Apart from the laboratory accreditation, researchers are advised to follow Guidelines for Stem Cell Research and Therapy from the Medical Development Division, MOH, published in 2009.
  2. Taha M, Imran S, Rahim F, Wadood A, Khan KM
    Bioorg. Chem., 2018 02;76:273-280.
    PMID: 29223804 DOI: 10.1016/j.bioorg.2017.12.001
    Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1-20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.
  3. Taha M, Arbin M, Ahmat N, Imran S, Rahim F
    Bioorg. Chem., 2018 04;77:47-55.
    PMID: 29331764 DOI: 10.1016/j.bioorg.2018.01.002
    Due to the great biological importance of β-glucuronidase inhibitors, here in this study, we have synthesized a library of novel benzothiazole derivatives (1-30), characterized by different spectroscopic methods and evaluated for β-glucuronidase inhibitory potential. Among the series sixteen compounds i.e.1-6, 8, 9, 11, 14, 15, 20-23 and 26 showed outstanding inhibitory potential with IC50 value ranging in between 16.50 ± 0.26 and 59.45 ± 1.12 when compared with standard d-Saccharic acid 1,4-lactone (48.4 ± 1.25 µM). Except compound 8 and 23 all active analogs showed better potential than the standard. Structure activity relationship has been established.
  4. Taha M, Sultan S, Nuzar HA, Rahim F, Imran S, Ismail NH, et al.
    Bioorg. Med. Chem., 2016 08 15;24(16):3696-704.
    PMID: 27312423 DOI: 10.1016/j.bmc.2016.06.008
    Thirty N-arylidenequinoline-3-carbohydrazides (1-30) have been synthesized and evaluated against β-glucuronidase inhibitory potential. Twenty four analogs showed outstanding β-glucuronidase activity having IC50 values ranging between 2.11±0.05 and 46.14±0.95 than standard d-saccharic acid 1,4 lactone (IC50=48.4±1.25μM). Six analogs showed good β-glucuronidase activity having IC50 values ranging between 49.38±0.90 and 80.10±1.80. Structure activity relationship and the interaction of the active compounds and enzyme active site with the help of docking studies were established. Our study identifies novel series of potent β-glucuronidase inhibitors for further investigation.
  5. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Saad SM, et al.
    Bioorg. Chem., 2016 Jun;66:117-23.
    PMID: 27149363 DOI: 10.1016/j.bioorg.2016.04.006
    Twenty derivatives of 5-aryl-2-(6'-nitrobenzofuran-2'-yl)-1,3,4-oxadiazoles (1-20) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (1-6, and 8-18) were found to be five to seventy folds more active with IC50 values in the range of 12.75±0.10-162.05±1.65μM, in comparison with the standard drug, acarbose (IC50=856.45±5.60μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.
  6. Rashid U, Rahim F, Taha M, Arshad M, Ullah H, Mahmood T, et al.
    Bioorg. Chem., 2016 Jun;66:111-6.
    PMID: 27140727 DOI: 10.1016/j.bioorg.2016.04.005
    Sixteen 4-hydroxycoumarin derivatives were synthesized, characterized through EI-MS and (1)H NMR and screened for urease inhibitory potential. Three compounds exhibited better urease inhibition than the standard inhibitor thiourea (IC50=21±0.11μM) while other four compounds exhibited good to moderate inhibition with IC50 values between 29.45±1.1μM and 69.53±0.9μM. Structure activity relationship was established on the basis of molecular docking studies, which helped to predict the binding interactions of the most active compounds.
  7. Yary T, Soleimannejad K, Abd Rahim F, Kandiah M, Aazami S, Poor SJ, et al.
    Lipids Health Dis, 2010;9:133.
    PMID: 21087475 DOI: 10.1186/1476-511X-9-133
    BACKGROUND: Despite significant improvements in the treatment of coronary heart disease (CHD), it is still a major cause of mortality and morbidity among the Iranian population. Epidemiological studies have documented that risk factors including smoking and the biochemical profile are responsible for the development of acute myocardial infarction (AMI). Psychological factors have been discussed as potential risk factors for coronary heart disease. Among emotional factors, depression correlates with coronary heart disease, particularly myocardial infarction.
    METHODS: This case-control study was conducted on 120 cases (69 males and 51 females) of acute myocardial infarction (AMI) and 120 controls, with a mean age of 62.48 ± 15.39 years. Cases and controls were matched by age, residence and sex.
    RESULTS: The results revealed that severe depression was independently associated with the risk of AMI (P = 0.025, OR = 2.6, 95% CI 1.1-5.8). The analysis of variables indicated that risk factors for developing depression were unmarried, low levels of polyunsaturated fatty acids (PUFAs), total dietary fiber (TDF) and carbohydrates. The levels of these dietary factors were lowest in severely depressed patients compared to those categorised as moderate or mild cases. Furthermore, severely depressed subjects were associated with higher levels of total cholesterol, high systolic blood pressure (SBP) and WHR. Age, income, a family history of coronary heart disease, education level, sex, employment and smoking were not associated with severe depression.
    CONCLUSION: The present study demonstrated that severe depression symptoms are independent risk factors for AMI. Furthermore, severe depression was associated with an unhealthy diet and AMI risk factors.
    Study site: Mostafa Hospital, Ilam Province, Iran
  8. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Khan KM, et al.
    Bioorg. Chem., 2016 Jun;66:80-7.
    PMID: 27038849 DOI: 10.1016/j.bioorg.2016.03.010
    Benzothiazole analogs (1-20) have been synthesized, characterized by EI-MS and (1)H NMR, and evaluated for urease inhibition activity. All compounds showed excellent urease inhibitory potential varying from 1.4±0.10 to 34.43±2.10μM when compared with standard thiourea (IC50 19.46±1.20μM). Among the series seventeen (17) analogs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, and 18 showed outstanding urease inhibitory potential. Analogs 15 and 19 also showed good urease inhibition activity. When we compare the activity of N-phenylthiourea 20 with all substituted phenyl derivatives (1-18) we found that compound 15 showed less activity than compound 20 having 3-methoxy substituent. The binding interactions of these active analogs were confirmed through molecular docking.
  9. Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, et al.
    Eur J Med Chem, 2015 Nov 13;105:156-70.
    PMID: 26491979 DOI: 10.1016/j.ejmech.2015.10.017
    Thirty derivatives of flavone hydrazone (5-34) had been synthesized through a five-step reaction and screened for their α-glucosidase inhibition activity. Chalcone 1 was synthesized through aldol condensation then subjected through oxidative cyclization, esterification, and condensation reaction to afford the final products. The result for baker's yeast α-glucosidase (EC 3.2.1.20) inhibition assay showed that all compounds are active with reference to the IC50 value of the acarbose (standard drug) except for compound 3. Increase in activity observed for compounds 2 to 34 clearly highlights the importance of flavone, hydrazide and hydrazone linkage in suppressing the activity of α-glucosidase. Additional functional group on N-benzylidene moiety further enhances the activity significantly. Compound 5 (15.4 ± 0.22 μM), a 2,4,6-trihydroxy substituted compound, is the most active compound in the series. Other compounds which were found to be active are those having chlorine, fluorine, and nitro substituents. Compounds with methoxy, pyridine, and methyl substituents are weakly active. Further studies showed that they are not active in inhibiting histone deacetylase activity and do not possess any cytotoxic properties. QSAR model was being developed to further identify the structural requirements contributing to the activity. Using Discovery Studio (DS) 2.5, various 2D descriptors were being used to develop the model. The QSAR model is able to predict the pIC50 and could be used as a prediction tool for compounds having the same skeletal framework. Molecular docking was done for all compounds using homology model of α-glucosidase to identify important binding modes responsible for inhibition activity.
  10. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F, et al.
    Bioorg. Chem., 2015 Dec;63:36-44.
    PMID: 26432614 DOI: 10.1016/j.bioorg.2015.09.004
    Biscoumarin analogs 1-18 have been synthesized, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All compounds showed variety of α-glucosidase inhibitory potential ranging in between 13.5±0.39 and 104.62±0.3μM when compared with standard acarbose having IC50 value 774.5±1.94μM. The binding interactions of the most active analogs were confirmed through molecular docking. The compounds showed very good interactions with enzyme. All synthesized compounds 1-18 are new. Our synthesized compounds can further be studied to developed lead compounds.
  11. Taha M, Ismail NH, Imran S, Selvaraj M, Rahim A, Ali M, et al.
    Bioorg. Med. Chem., 2015 Dec 1;23(23):7394-404.
    PMID: 26526743 DOI: 10.1016/j.bmc.2015.10.037
    A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å).
  12. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Riaz M
    Bioorg. Med. Chem., 2015 Nov 15;23(22):7211-8.
    PMID: 26507431 DOI: 10.1016/j.bmc.2015.10.017
    Disulfide analogs (1-20) have been synthesized, characterized by HR-MS, (1)H NMR and (13)C NMR and screened for urease inhibitory potential. All compounds were found to have varied degree of urease inhibitory potential ranging in between 0.4 ± 0.01 and 18.60 ± 1.24 μM when compared with standard inhibitor thiourea with IC50 19.46 ± 1.20 μM. Structure activity relationship has been established. The binding interactions of compounds with enzyme were confirmed through molecular docking. All the synthesized compounds 1-20 are new. Our compounds are cheaply synthesizable with high yield and can further be studied to discovery lead compounds. We further, tested for carbonic anhydrase, PDE1 and butyrylcholinesterase but they show no activity. On the other hand we evaluated all compounds for cytotoxicity they showed no toxicity.
  13. Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, et al.
    Chem Biol Drug Des, 2016 Mar;87(3):361-73.
    PMID: 26362113 DOI: 10.1111/cbdd.12666
    We report herein the synthesis, α-glucosidase inhibition and docking studies for a series of 3-15 new flavones. A simple nucleophilic substitution reaction takes place between 3'hydroxyflavone (2) with halides to afford the new flavones. Chalcone (1), 3'hydroxyflavone (2) and the newly synthesized flavones (3-15) were being evaluated for their ability to inhibit activity of α-glucosidase. Compounds 2, 3, 5, 7-10 and 13 showed good inhibitory activity with IC50 values ranging between 1.26 and 36.44 μm as compared to acarbose (IC50 = 38.25 ± 0.12 μm). Compounds 5 (5.45 ± 0.08 μm), 7 (1.26 ± 0.01 μm) and 8 (8.66 ± 0.08 μm) showed excellent inhibitory activity, and this may be due to trifluoromethyl substitution that is common for these compounds. Compound 7, a 2,5-trifluoromethyl-substituted compound, recorded the highest inhibition activity, and it is thirty times better than the standard drug. Docking studies for compound 7 suggest that both trifluoromethyl substituents are well positioned in a binding pocket surrounded by Phe300, Phe177, Phe157, Ala278, Asp68, Tyr71 and Asp214. The ability of compound 7 to interact with Tyr71 and Phe177 is extremely significant as they are found to be important for substrates recognition by α-glucosidase.
  14. Taha M, Ullah H, Al Muqarrabun LMR, Khan MN, Rahim F, Ahmat N, et al.
    Eur J Med Chem, 2018 Jan 01;143:1757-1767.
    PMID: 29133042 DOI: 10.1016/j.ejmech.2017.10.071
    Thirty-two (32) bis-indolylmethane-hydrazone hybrids 1-32 were synthesized and characterized by 1HNMR, 13CNNMR and HREI-MS. All compounds were evaluated in vitro for β-glucuronidase inhibitory potential. All analogs showed varying degree of β-glucuronidase inhibitory potential ranging from 0.10 ± 0.01 to 48.50 ± 1.10 μM when compared with the standard drug d-saccharic acid-1,4-lactone (IC50 value 48.30 ± 1.20 μM). Derivatives 1-32 showed the highest β-glucuronidase inhibitory potentials which is many folds better than the standard drug d-saccharic acid-1,4-lactone. Further molecular docking study validated the experimental results. It was proposed that bis-indolylmethane may interact with some amino acid residues located within the active site of β-glucuronidase enzyme. This study has culminated in the identification of a new class of potent β-glucuronidase inhibitors.
  15. Taha M, Irshad M, Imran S, Chigurupati S, Selvaraj M, Rahim F, et al.
    Eur J Med Chem, 2017 Dec 01;141:530-537.
    PMID: 29102178 DOI: 10.1016/j.ejmech.2017.10.028
    Piperazine Sulfonamide analogs (1-19) have been synthesized, characterized by different spectroscopic techniques and evaluated for α-amylase Inhibition. Analogs 1-19 exhibited a varying degree of α-amylase inhibitory activity with IC50 values ranging in between 1.571 ± 0.05 to 3.98 ± 0.397 μM when compared with the standard acarbose (IC50 = 1.353 ± 0.232 μM). Compound 1, 2, 3 and 7 showed significant inhibitory effects with IC50 value 2.348 ± 0.444, 2.064 ± 0.04, 1.571 ± 0.05 and 2.118 ± 0.204 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
  16. Salahuddin L, Ismail Z, Hashim UR, Ismail NH, Raja Ikram RR, Abdul Rahim F, et al.
    Health Informatics J, 2020 Mar;26(1):420-434.
    PMID: 30843460 DOI: 10.1177/1460458219833090
    This study aims to investigate healthcare practitioner behaviour in adopting Health Information Systems which could affect patients' safety and quality of health. A qualitative study was conducted based on a semi-structured interview protocol on 31 medical doctors in three Malaysian government hospitals implementing the Total Hospital Information Systems. The period of study was between March and May 2015. A thematic qualitative analysis was performed on the resultant data to categorize them into relevant themes. Four themes emerged as healthcare practitioners' behaviours that influence the unsafe use of Hospital Information Systems. The themes include (1) carelessness, (2) workarounds, (3) noncompliance to procedure, and (4) copy and paste habit. By addressing these behaviours, the hospital management could further improve patient safety and the quality of patient care.
  17. Taha M, Shah SAA, Afifi M, Imran S, Sultan S, Rahim F, et al.
    Bioorg. Chem., 2018 04;77:586-592.
    PMID: 29477126 DOI: 10.1016/j.bioorg.2018.01.033
    We have synthesized seventeen Coumarin based derivatives (1-17), characterized by 1HNMR, 13CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent's on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
  18. Taha M, Adnan Ali Shah S, Afifi M, Imran S, Sultan S, Rahim F, et al.
    Bioorg. Chem., 2018 08;78:17-23.
    PMID: 29525348 DOI: 10.1016/j.bioorg.2018.02.028
    Thymidine phosphorylase (TP) over expression plays role in several pathological conditions, such as rheumatoid arthritis, chronic inflammatory diseases, psoriasis, and tumor angiogenesis. The inhibitor of this enzyme plays an important role in preventing the serious threat due to over expression of TP. In this regard, a series of seventeenanalogs of 3-formylcoumarin (1-17) were synthesized, characterized by 1HNMR and EI-MS and screened for thymidine phosphorylaseinhibitory activity. All analogs showed a variable degree of thymidine phosphorylase inhibition with IC50 values ranging between 0.90 ± 0.01 and 53.50 ± 1.20 μM when compared with the standard inhibitor 7-Deazaxanthine having IC50 value 38.68 ± 1.12 μM. Among the series, fifteenanalogs such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16 and 17 showed excellent inhibition which is many folds better than the standard 7-Deazaxanthine whiletwo analogs 13 and 14 showed good inhibition. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituents on phenyl ring. Molecular docking study was carried out to understand the binding interaction of the most active analogs.
  19. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F
    Bioorg. Chem., 2017 02;70:184-191.
    PMID: 28043716 DOI: 10.1016/j.bioorg.2016.12.009
    Thiourea derivatives having benzimidazole 1-17 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker's yeast α-glucosidase enzyme. Compounds 1-17 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83±0.66 and 297.99±1.20μM which are more better than the standard acarbose (IC50=774.5±1.94μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57±0.81 and 35.83±0.66μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
  20. Baharudin MS, Taha M, Imran S, Ismail NH, Rahim F, Javid MT, et al.
    Bioorg. Chem., 2017 06;72:323-332.
    PMID: 28505547 DOI: 10.1016/j.bioorg.2017.05.005
    Natural products are the main source of motivation to design and synthesize new molecules for drug development. Designing new molecules against β-glucuronidase inhibitory is utmost essential. In this study indole analogs (1-35) were synthesized, characterized using various spectroscopic techniques including 1H NMR and EI-MS and evaluated for their β-glucuronidase inhibitory activity. Most compounds were identified as potent inhibitors for the enzyme with IC50 values ranging between 0.50 and 53.40μM, with reference to standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Structure-activity relationship had been also established. The results obtained from docking studies for the most active compound 10 showed that hydrogen bond donor features as well as hydrogen bonding with (Oε1) of nucleophilic residue Glu540 is believed to be the most importance interaction in the inhibition activity. It was also observed that hydroxyl at fourth position of benzylidene ring acts as a hydrogen bond donor and interacts with hydroxyl (OH) on the side chain of catalysis residue Tyr508. The enzyme-ligand complexed were being stabilized through electrostatic π-anion interaction with acid-base catalyst Glu451 (3.96Å) and thus preventing Glu451 from functioning as proton donor residue.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links