Displaying all 10 publications

Abstract:
Sort:
  1. Rajashekar Rao, B., Parineetha, P.B., Venkata Raman, V.
    MyJurnal
    Introduction: The study was conducted to look for the effects of polycythaemia on Glycosylated Haemoglobin (GHb) levels and to the see the correlations between the levels of haemoglobin, GHb, blood glucose, and lipid profi les including Atherogenic Index of plasma (AIP), in type 2 diabetics living 5800ft above sea level at Gangtok in Sikkim, India. GHb is used to predict the risk of long term complications of Diabetes mellitus (DM) like coronary artery disease (CAD). Materials and Methods: The study group consisted of Group I (Type 2 DM male patients with PPG levels 200mg/dl) and age matched healthy males formed the control group. Results: In Group I, GHb levels correlated positively with AIP, but not with TC/HDL-C ratio. In Group II, both PPG and GHb levels correlated positively with Total cholesterol (TC), LDL Cholesterol, TC /HDL-C ratio and AIP. This shows that higher PPG levels are associated with more Atherogenic lipid profi les. Study also showed higher GHb levels in controls at 7.61%, and correlated positively with postprandial glucose (PPG) levels (r = 0.92). Conclusion: In predicting risk for future CAD, PPG levels and AIP can be used as an adjunct parameter.
  2. You Poh Seng Rao B, Shantakumar G
    Int Labour Rev, 1974 May-Jun;109(5-6):459-70.
    PMID: 12307191
  3. Vasanth Rao VRB, Candasamy M, Bhattamisra SK
    Diabetes Metab Syndr, 2019 05 07;13(3):2112-2120.
    PMID: 31235145 DOI: 10.1016/j.dsx.2019.05.004
    Obesity is a complex disorder that is linked to many coexisting disorders. Recent epidemiological data have suggested that the prevalence of obesity is at an all-time high, growing to be one of the world's biggest problems. There are several mechanisms on how individuals develop obesity which includes genetic and environmental factors. Not only does obesity contribute to other health issues but it also greatly affects the quality of life, physical ability, mental strength and imposes a huge burden in terms of healthcare costs. Along with that, obesity is associated with the risk of mortality and has been shown to reduce the median survival rate. Obesity is basically when the body is not able to balance energy intake and output. When energy intake exceeds energy expenditure, excess calories will be stored as fat leading to weight gain and eventually obesity. The therapeutic market for treating obesity is composed of many different interventions from lifestyle intervention, surgical procedures to pharmacotherapeutic approaches. All of these interventions have their respective benefits and disadvantages and are specifically prescribed to a patient based on the severity of their obesity as well as the existence of other health conditions. This review discusses the genetic and environmental causes of obesity along with the recent developments in anti-obesity therapies.
  4. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

  5. Kannaiyan K, Biradar Sharashchandra M, Kattimani S, Devi M, Vengal Rao B, Kumar Chinna S
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S399-S403.
    PMID: 33149494 DOI: 10.4103/jpbs.JPBS_117_20
    Introduction: Polymethyl methacrylate (PMMA) has been widely accepted and used in dentistry owing to its working characteristics, aesthetics and stability in the oral environment, ease in manipulation, and inexpensive processing methods and equipment.

    Aim and Objectives: The aim of this study was to evaluate the flexural strength of a high-impact PMMA denture base resin material and flexural strength of a commonly available heat cure PMMA denture base material with Kevlar, glass, and nylon fibers.

    Materials and Methods: The test samples were studied under two groups. The Group I (control group) comprised pre-reinforced PMMA (Lucitone 199; Dentsply Sirona Prosthetics, York, Pennsylvania, USA) consisting of 12 samples and second group comprised regular PMMA (DPI, Mumbai, India) reinforced with different fibers. The second test group was further divided into three subgroups as Group 2, Group 3, and Group 4 comprising 12 samples each designated by the letters a-l. All the samples were marked on both ends. A total of 48 samples were tested. Results were analyzed and any P value ≤0.05 was considered as statistically significant (t test).

    Results: All the 48 specimens were subjected to a 3-point bending test on a universal testing machine (MultiTest 10-i, Sterling, VA, USA) at a cross-head rate of 2 mm/min. A load was applied on each specimen by a centrally located rod until fracture occurred; span length taken was 50 mm. Flexural strength was then calculated.

    Conclusion: Reinforcement of conventional denture base resin with nylon and glass fibers showed statistical significance in the flexural strength values when compared to unreinforced high impact of denture base resin.

  6. Kanagesan S, Aziz SB, Hashim M, Ismail I, Tamilselvan S, Alitheen NB, et al.
    Molecules, 2016 Mar 11;21(3):312.
    PMID: 26978339 DOI: 10.3390/molecules21030312
    Manganese ferrite (MnFe2O4) magnetic nanoparticles were successfully prepared by a sol-gel self-combustion technique using iron nitrate and manganese nitrate, followed by calcination at 150 °C for 24 h. Calcined sample was systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and vibrational sample magnetometry (VSM) in order to identify the crystalline phase, functional group, morphology, particle size, shape and magnetic behavior. It was observed that the resultant spinal ferrites obtained at low temperature exhibit single phase, nanoparticle size and good magnetic behavior. The study results have revealed the existence of a potent dose dependent cytotoxic effect of MnFe2O4 nanoparticles against 4T1 cell lines at varying concentrations with IC50 values of 210, 198 and 171 μg/mL after 24 h, 48 h and 72 h of incubation, respectively. Cells exposed to higher concentrations of nanoparticles showed a progressive increase of apoptotic and necrotic activity. Below 125 μg/mL concentration the nanoparticles were biocompatible with 4T1 cells.
  7. Sanjeevannavar MB, Banapurmath NR, Soudagar MEM, Atgur V, Hossain N, Mujtaba MA, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132450.
    PMID: 34624353 DOI: 10.1016/j.chemosphere.2021.132450
    Biodiesel commercialization is questionable due to poor brake thermal efficiency. Biodiesel utilization should be improved with the addition of fuel additives. Hydrogen peroxide is a potential fuel additive due to extra hydrogen and oxygen content, which improves the combustion process. In this experimental study, biodiesel has been produced from Jatropha oil employing catalyzed transesterification homogeneously to examine its influence on the performance and emissions at engine loads with 1500 rpm utilizing a four-stroke single-cylinder diesel engine. D60B40 (having 60% diesel and 40% biodiesel) and D60B30A10 (60% diesel, 30% biodiesel and 10% hydrogen peroxide (H2O2)), are the fuel mixtures in the current study. The addition of H2O2 reduces emissions and enhances the combustion process. This effect occurred due to the micro-explosion of the injected fuel particles (which increases in-cylinder pressure and heat release rate (HRR)). An increase of 20% in BTE and 25% reduction in BSFC for D60B30A10 was observed compared to D60B40. Significant reduction in emissions of HC up to 17.54%, smoke by 24.6% CO2 by 3.53%, and an increase in NOx was noticed when the engine is operated with D60B30A10. The HRR increased up to 18.6%, ID reduced by 10.82%, and in-cylinder pressure increased by 8.5%. Test runs can be minimized as per Taguchi's design of experiments. It is possible to provide the estimates for the full factorial design of experiments. Exhaust gas temperature standards are evaluated and examined for all fuel blends.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links