Displaying all 10 publications

Abstract:
Sort:
  1. Netramai S, Kijchavengkul T, Samsudin H, Lertsiri S
    Data Brief, 2020 Aug;31:105906.
    PMID: 32637506 DOI: 10.1016/j.dib.2020.105906
    Crude extracts of fresh Dendrobium Sonia 'Earsakul' orchid flowers (DSE) were prepared using microwave assisted extraction (MAE; using household microwave oven) and hot water extraction (HWE; at constant 80 °C). The obtained DSEs were measured their absorbance at λmax of 543 and 583 nm and determined their total monomeric anthocyanin contents (TAC). Mathematical models of MAE of Dendrobium Sonia 'Earsakul' orchid flower were constructed using response surface methodology - Box-Behnken design. Studied parameters included flower to water ratio, microwave power, and extraction time, with absorbance at λmax as response. The data generated were 1) visible spectrum (400-700 nm) of DSE; 2) absorbance values at λmax and 3) TAC of DSEs obtained from various extraction conditions of MAE and HWE; 4) linear equations describing correlations between TAC and absorbance at λmax of DSEs; and 5) mathematical models of MAE of Dendrobium Sonia 'Earsakul' orchid.
  2. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R
    Adv Drug Deliv Rev, 2016 12 15;107:333-366.
    PMID: 27046295 DOI: 10.1016/j.addr.2016.03.010
    Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environmental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with different fillers such as fibers, and micro- and nanoparticles. This paper presents a review of the current status of PLA mass production, processing techniques and current applications, and also covers the methods to tailor PLA properties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of this unique polymer.
  3. Ong HT, Samsudin H, Soto-Valdez H
    Crit Rev Food Sci Nutr, 2022;62(4):957-979.
    PMID: 33081493 DOI: 10.1080/10408398.2020.1830747
    Plastic packaging materials (PPMs) protect food from contamination, maintain quality, and ease transportation and distribution. Additives included during the manufacturing and processing of PPMs improve flexibility, durability, barrier properties, and sometimes aid the processing itself. During processing, these additives, even the monomers used to produce the plastics, can produce side products or breakdown products as a result of degradation and various chemical reactions. These starting substances and reaction products include 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), phthalates/phthalic acid esters, alkylphenols, and bis(2-ethylhexyl) adipate, which are considered endocrine-disrupting chemicals (EDCs) that may interfere with the human endocrine system and produce adverse reproductive, neurological, developmental, and immune effects. When in contact with food, EDCs can migrate into food if conditions are appropriate, thereby possibly jeopardizing food safety. Chemical risk assessment and regulatory control were developed to reduce human exposure to harmful migrated EDCs. This article gives an overview of the migration of EDCs from PPMs and control measures to reduce the risk of adverse impacts on human health.
  4. Hj Latip DN, Samsudin H, Utra U, Alias AK
    Crit Rev Food Sci Nutr, 2021;61(17):2841-2862.
    PMID: 32648775 DOI: 10.1080/10408398.2020.1789064
    Starch is a complex carbohydrate formed by the repeating units of glucose structure connected by the alpha-glycosidic linkages. Starch is classified according to their derivatives such as cereals, legumes, tubers, palms, fruits, and stems. For decades, native starch has been widely utilized in various applications such as a thickener, stabilizer, binder, and coating agent. However, starches need to be modified to enhance their properties and to make them more functional in a wide range of applications. Porous starch is a modified starch product which has attracted interest of late. It consists of abundant pores that are distributed on the granule surface without compromising the integrity of its granular structure. Porous starch can be produced either by enzymatic, chemical, and physical methods or a combination thereof. The type of starch and selection of the modification method highly influence the formation of pore structure. By carefully choosing a suitable starch and modification method, the desired morphology of porous starch can be produced and applied accordingly for its intended application. Innovations and technologies related to starch modification methods have evolved over the years in terms of the structure, properties and modification effects of different starch varieties. Therefore, this article reviews recent modification methods in developing porous starch from various origins.
  5. Jahanbakhsh J, Salmah WM, Abubakar NT, Samsudin H
    MyJurnal
    Lymphangiomas are hamartomatous congenital malformations of the lymphatic system that usually involve subcutaneous tissues of cervico-facial region. Rarely, it can be found in subcutaneous tissue of proximal extremities, the buttocks and the trunk. Magnetic Resonance Imaging (MRI) is the best modality to assess the tumor specification and extension. We report a case of lymphangioma at a rare site with its radiological features and patient responsed to the sclerosant therapy.
  6. Samsudin H, Auras R, Burgess G, Dolan K, Soto-Valdez H
    Food Res Int, 2018 03;105:920-929.
    PMID: 29433289 DOI: 10.1016/j.foodres.2017.11.065
    A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (Kp,f) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, Kp,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, Kp,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, Kp,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated.
  7. Rahman WF, Jalil NA, Samsudin H, Merican SR, Lam AK
    Pathology, 2016 Feb;48 Suppl 1:S160.
    PMID: 27772966 DOI: 10.1016/j.pathol.2015.12.439
  8. Samsudin H, Auras R, Mishra D, Dolan K, Burgess G, Rubino M, et al.
    Food Res Int, 2018 01;103:515-528.
    PMID: 29389642 DOI: 10.1016/j.foodres.2017.09.021
    Migration studies of chemicals from contact materials have been widely conducted due to their importance in determining the safety and shelf life of a food product in their packages. The US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA) require this safety assessment for food contact materials. So, migration experiments are theoretically designed and experimentally conducted to obtain data that can be used to assess the kinetics of chemical release. In this work, a parameter estimation approach was used to review and to determine the mass transfer partition and diffusion coefficients governing the migration process of eight antioxidants from poly(lactic acid), PLA, based films into water/ethanol solutions at temperatures between 20 and 50°C. Scaled sensitivity coefficients were calculated to assess simultaneously estimation of a number of mass transfer parameters. An optimal experimental design approach was performed to show the importance of properly designing a migration experiment. Additional parameters also provide better insights on migration of the antioxidants. For example, the partition coefficients could be better estimated using data from the early part of the experiment instead at the end. Experiments could be conducted for shorter periods of time saving time and resources. Diffusion coefficients of the eight antioxidants from PLA films were between 0.2 and 19×10-14m2/s at ~40°C. The use of parameter estimation approach provided additional and useful insights about the migration of antioxidants from PLA films.
  9. Harivaindaran KV, Hữu Tiến N, Nguyễn Song Đinh T, Samsudin H, Ariffin F, Mohammadi Nafchi A
    Food Sci Nutr, 2023 Nov;11(11):7296-7310.
    PMID: 37970392 DOI: 10.1002/fsn3.3655
    Nigella sativa, commonly known as the black seed, is a culinary spice therapeutic against many ailments. Common preparation practice of roasting or heating the seeds often deteriorates bioactive compounds, which can be remedied with superheated steam (SHS). With roasting temperatures of 150, 200, and 250°C and roasting times of 10, 15, and 20 min, convection and SHS roasting media were tested, and their effects on proximate analysis, antioxidant assays, and oil quality were evaluated. For proximate content, moisture significantly decreased from 9.08% in unroasted seeds to 4.18%-1.04% in roasted seeds, while fat increased to as high as 44.76% from 32.87% in unroasted seeds. Roasting only slightly increased ash content and had no significant impact on protein and carbohydrate content. SHS roasted black seeds had better DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical scavenging capacity (RSC) than convection roasted seeds. DPPH RSC decreased with elevated roasting time and temperature, conversely related to total phenolic content, which increased with increased roasting time and temperature. Oil of roasted seeds developed an increasingly intense brown color from an initial light, yellow, unroasted oil with better extraction efficiency in SHS roasting. For oil quality analysis, free fatty acid values were significantly lower in both roasted samples. Peroxide value was initially recorded at 84 in convection and 48 (meq O2/kg of oil) in SHS roasted samples. In contrast, p-anisidine values were initially recorded at 28.36 in convection roasted samples compared to 23.73 in SHS roasted samples. Based on all quality analyses, SHS showed better potential in black seed quality preservation.
  10. Kamarudin SH, Rayung M, Abu F, Ahmad S, Fadil F, Karim AA, et al.
    Polymers (Basel), 2022 Jan 02;14(1).
    PMID: 35012197 DOI: 10.3390/polym14010174
    The development of antimicrobial packaging has been growing rapidly due to an increase in awareness and demands for sustainable active packaging that could preserve the quality and prolong the shelf life of foods and products. The addition of highly efficient antibacterial nanoparticles, antifungals, and antioxidants to biodegradable and environmentally friendly green polymers has become a significant advancement trend for the packaging evolution. Impregnation of antimicrobial agents into the packaging film is essential for impeding or destroying the pathogenic microorganisms causing food illness and deterioration. Higher safety and quality as well as an extended shelf life of sustainable active packaging desired by the industry are further enhanced by applying the different types of antimicrobial packaging systems. Antimicrobial packaging not only can offer a wide range of advantages, but also preserves the environment through usage of renewable and biodegradable polymers instead of common synthetic polymers, thus reducing plastic pollution generated by humankind. This review intended to provide a summary of current trends and applications of antimicrobial, biodegradable films in the packaging industry as well as the innovation of nanotechnology to increase efficiency of novel, bio-based packaging systems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links