Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Ali PS, John J, Selvaraj M, Kek TL, Salleh MZ
    Microbiol. Immunol., 2015 May;59(5):299-304.
    PMID: 25753649 DOI: 10.1111/1348-0421.12253
    Nodamura virus (NoV) B2, a suppressor of RNA interference, binds double stranded RNAs (dsRNAs) and small interfering RNAs (siRNAs) corresponding to Dicer substrates and products. Here, we report that the amino terminal domain of NoV B2 (NoV B2 79) specifically binds siRNAs but not dsRNAs. NoV B2 79 oligomerizes on binding to 27 nucleotide siRNA. Mutation of the residues phenylalanine49 and alanine60 to cysteine and methionine, respectively enhances the RNA binding affinity of NoV B2 79. Circular dichroism spectra demonstrated that the wild type and mutant NoV B2 79 have similar secondary structure conformations.
  2. Taha M, Ismail NH, Imran S, Selvaraj M, Rahim A, Ali M, et al.
    Bioorg Med Chem, 2015 Dec 1;23(23):7394-404.
    PMID: 26526743 DOI: 10.1016/j.bmc.2015.10.037
    A series of compounds consisting of 25 novel oxadiazole-benzohydrazone hybrids (6-30) were synthesized through a five-step reaction sequence and evaluated for their β-glucuronidase inhibitory potential. The IC50 values of compounds 6-30 were found to be in the range of 7.14-44.16μM. Compounds 6, 7, 8, 9, 11, 13, 18, and 25 were found to be more potent than d-saccharic acid 1,4-lactone (48.4±1.25μM). These compounds were further subjected for molecular docking studies to confirm the binding mode towards human β-d-glucuronidase active site. Docking study for compound 13 (IC50=7.14±0.30μM) revealed that it adopts a binding mode that fits within the entire pocket of the binding site of β-d-glucuronidase. Compound 13 has the maximum number of hydrogens bonded to the residues of the active site as compared to the other compounds, that is, the ortho-hydroxyl group forms hydrogen bond with carboxyl side chain of Asp207 (2.1Å) and with hydroxyl group of Tyr508 (2.6Å). The other hydroxyl group forms hydrogen bond with His385 side chain (2.8Å), side chain carboxyl oxygen of Glu540 (2.2Å) and Asn450 side-chain's carboxamide NH (2.1Å).
  3. Alomari M, Taha M, Imran S, Jamil W, Selvaraj M, Uddin N, et al.
    Bioorg Chem, 2019 11;92:103235.
    PMID: 31494327 DOI: 10.1016/j.bioorg.2019.103235
    Hybrid bis-coumarin derivatives 1-18 were synthesized and evaluated for their in vitro urease inhibitory potential. All compounds showed outstanding urease inhibitory potential with IC50 value (The half maximal inhibitory concentration) ranging in between 0.12 SD 0.01 and 38.04 SD 0.63 µM (SD standard deviation). When compared with the standard thiourea (IC50 = 21.40 ± 0.21 µM). Among these derivatives, compounds 7 (IC50 = 0.29 ± 0.01), 9 (IC50 = 2.4 ± 0.05), 10 (IC50 = 2.25 ± 0.05) and 16 (IC50 = 0.12 ± 0.01) are better inhibitors of the urease compared with thiourea (IC50 = 21.40 ± 0.21 µM). To find structure-activity relationship molecular docking as well as absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. All compounds were tested for cytotoxicity and found non-toxic.
  4. Appaturi JN, Ratti R, Phoon BL, Batagarawa SM, Din IU, Selvaraj M, et al.
    Dalton Trans, 2021 Apr 07;50(13):4445-4469.
    PMID: 33720238 DOI: 10.1039/d1dt00456e
    One of the most crucial attributes of synthetic organic chemistry is to design organic reactions under the facets of green chemistry for the sustainable production of chemicals. Thus, due to the intensified environmental and safety concern, the need for new technologies for conducting chemical transformation has grown. In this regard, there is enormous interest in the use of heterogeneous catalysts as they generally avoid the generation of waste, require fewer toxic reagents, as well as entail easier separation and recycling of the catalyst. α,β-Unsaturated acids have been widely used in various industrial applications and have been identified as one of the most promising chemicals obtained via the Knoevenagel condensation reaction. This review aims to discuss the most pertinent heterogeneous catalytic systems such as zeolites, mesoporous silica, ionic liquids, metal oxides, and graphitic carbon nitride-based catalysts in the Knoevenagel reaction. Ultimately, this review focuses not only on the catalyst but also provides an overall idea and guide for the preparation of new catalysts with outstanding properties by looking at the chemical and engineering aspects such as the reaction conditions and the mechanisms.
  5. Appaturi JN, Ratti R, Phoon BL, Batagarawa SM, Ud Din I, Selvaraj M, et al.
    Dalton Trans, 2021 Apr 21;50(15):5370.
    PMID: 33881103 DOI: 10.1039/d1dt90055b
    Correction for 'A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation' by Jimmy Nelson Appaturi et al., Dalton Trans., 2021, 50, 4445-4469, DOI: 10.1039/d1dt00456e.
  6. Selvaraj M, Assiri MA, Singh H, Appaturi JN, Subrahmanyam C, Ha CS
    Dalton Trans, 2021 Jan 21.
    PMID: 33475664 DOI: 10.1039/d0dt04158k
    The Prins cyclization of styrene (SE) with paraformaldehyde (PFCHO) was conducted with mesoporous ZnAlMCM-41 catalysts for the synthesis of 4-phenyl-1,3-dioxane (4-PDO) using a liquid phase heterogeneous catalytic method. For a comparison study, the Prins cyclization reaction was also conducted over different nanoporous catalysts, e.g. mesoporous solid acid catalysts, AlMCM-41(21) and ZnMCM-41(21), and microporous catalysts, USY, Hβ, HZSM-5, and H-mordenite. The recyclable mesoporous ZnAlMCM-41 catalysts were reused in this reaction to evaluate their catalytic stabilities. Since ZnAlMCM-41(75) has higher catalytic activity than other solid acid catalysts, washed ZnAlMCM-41(75)/W-ZnAlMCM-41(75) was prepared using an efficient chemical treatment method and used with various reaction parameters to find an optimal parameter for the highly selective synthesis of 4-PDO. W-ZnAlMCM-41(75) was also used in the Prins cyclization of olefins with PFCHO and formalin (FN, 37% aqueous solution of formaldehyde (FCHO)) under different reaction conditions to obtain 1,3-dioxanes, which are widely used as solvents or intermediates in organic synthesis. Based on the nature of catalysts used under different reaction conditions, a reasonable plausible reaction mechanism for the Prins cyclization of SE with PFCHO is proposed. Notably, it can be seen from the catalytic results of all catalysts that the W-ZnAlMCM-41(75) catalyst has higher 4-PDO selectivity with exceptional catalytic activity than other microporous and mesoporous catalysts.
  7. Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI
    Bioorg Chem, 2017 08;73:121-127.
    PMID: 28648924 DOI: 10.1016/j.bioorg.2017.06.007
    A series of twenty indole hydrazone analogs (1-21) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65μM. Nine compounds that are 1 (2.23±0.01μM), 8 (2.44±0.12μM), 10 (1.92±0.12μM), 12 (2.49±0.17μM), 13 (1.66±0.09μM), 17 (2.25±0.1μM), 18 (1.87±0.25μM), 20 (1.83±0.63μM), and 19 (1.97±0.02μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05±0.29μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
  8. Taha M, Baharudin MS, Ismail NH, Selvaraj M, Salar U, Alkadi KA, et al.
    Bioorg Chem, 2017 04;71:86-96.
    PMID: 28160943 DOI: 10.1016/j.bioorg.2017.01.015
    Novel sulfonamides having oxadiazole ring were synthesized by multistep reaction and evaluated to check in vitro β-glucuronidase inhibitory activity. Luckily, except compound 13, all compounds were found to demonstrate good inhibitory activity in the range of IC50=2.40±0.01-58.06±1.60μM when compared to the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Structure activity relationship was also presented. However, in order to ensure the SAR as well as the molecular interactions of compounds with the active site of enzyme, molecular docking studies on most active compounds 19, 16, 4 and 6 was carried out. All derivatives were fully characterized by 1H NMR, 13C NMR and EI-MS spectroscopic techniques. CHN analysis was also presented.
  9. Selvaraj M, Assiri MA, Rokhum SL, Manjunatha C, Appaturi JN, Murugesan S, et al.
    Dalton Trans, 2021 Nov 02;50(42):15118-15128.
    PMID: 34612261 DOI: 10.1039/d1dt01760h
    A sustainable method was used to produce aromatic ketones by the solvent-free benzylic oxidation of aromatics over mesoporous Cu(II)-containing propylsalicylaldimine anchored on the surface of Santa Barbara Amorphous type material-15 (CPSA-SBA-15) catalysts. For comparison, mesoporous Cu(II)-containing propylsalicylaldimine anchored with Mobil Composition of Matter-41 (CPSA-MCM-41) was assessed for these reactions under similar reaction conditions. The washed CPSA-SBA-15(0.2) (W-CPSA-SBA-15(0.2)) catalyst was prepared using an easy chemical method for the complete removal of non-framework CuO nanoparticle species on the surface of pristine CPSA-SBA-15(0.2) (p-CPSA-SBA-15(0.2) prepared with 0.2 wt% of Cu, and its catalytic activity was evaluated with different reaction parameters, oxidants and solvents. In order to confirm the catalytic stability, the recyclability was assessed, and the performance of hot-filtration experiments was also evaluated. All the catalysts used for these catalytic reactions were characterized using many instrumental techniques to pinpoint the mesoporous nature and active sites of the catalysts. The proposed reaction mechanism has been well documented on the basis of catalytic results obtained for solvent-free oxidation of aromatics. Based on the catalytic results, we found that W-CPSA-SBA-15(0.2) is a very ecofriendly catalyst with exceptional catalytic activity.
  10. Taha M, Irshad M, Imran S, Chigurupati S, Selvaraj M, Rahim F, et al.
    Eur J Med Chem, 2017 Dec 01;141:530-537.
    PMID: 29102178 DOI: 10.1016/j.ejmech.2017.10.028
    Piperazine Sulfonamide analogs (1-19) have been synthesized, characterized by different spectroscopic techniques and evaluated for α-amylase Inhibition. Analogs 1-19 exhibited a varying degree of α-amylase inhibitory activity with IC50 values ranging in between 1.571 ± 0.05 to 3.98 ± 0.397 μM when compared with the standard acarbose (IC50 = 1.353 ± 0.232 μM). Compound 1, 2, 3 and 7 showed significant inhibitory effects with IC50 value 2.348 ± 0.444, 2.064 ± 0.04, 1.571 ± 0.05 and 2.118 ± 0.204 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
  11. Yadav S, Narasimhan B, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, et al.
    Chem Cent J, 2017 Dec 22;11(1):137.
    PMID: 29274036 DOI: 10.1186/s13065-017-0361-6
    BACKGROUND: A series of 2-(1H-benzo[d]imidazol-2-ylthio)-N-(substituted 4-oxothiazolidin-3-yl) acetamides was synthesized and characterized by physicochemical and spectral means. The synthesized compounds were evaluated for their in vitro antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Candida albicans and Aspergillus niger by tube dilution method. The in vitro cytotoxicity study of the compounds was carried out against human colorectal (HCT116) cell line. The most promising anticancer derivatives (5l, 5k, 5i and 5p) were further docked to study their binding efficacy to the active site of the cyclin-dependent kinase-8.

    RESULTS: All the compounds possessed significant antimicrobial activity with MIC in the range of 0.007 and 0.061 µM/ml. The cytotoxicity study revealed that almost all the derivatives were potent in inhibiting the growth of HCT116 cell line in comparison to the standard drug 5-fluorouracil. Compounds 5l and 5k (IC50 = 0.00005 and 0.00012 µM/ml, respectively) were highly cytotoxic towards HCT116 cell line in comparison to 5-fluorouracil (IC50 = 0.00615 µM/ml) taken as standard drug.

    CONCLUSION: The molecular docking studies of potent anticancer compounds 5l, 5k, 5i and 5p showed their putative binding mode and significant interactions with cyclin-dependent kinase-8 as prospective agents for treating colon cancer.

  12. Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, et al.
    BMC Chem, 2020 Dec;14(1):43.
    PMID: 32685927 DOI: 10.1186/s13065-020-00695-1
    In this study, 5-amino-nicotinic acid derivatives (1-13) have been designed and synthesized to evaluate their inhibitory potential against α-amylase and α-glucosidase enzymes. The synthesized compounds (1-13) exhibited promising α-amylase and α-glucosidase activities. IC50 values for α-amylase activity ranged between 12.17 ± 0.14 to 37.33 ± 0.02 µg/mL ± SEM while for α-glucosidase activity the IC50 values were ranged between 12.01 ± 0.09 to 38.01 ± 0.12 µg/mL ± SEM. In particular, compounds 2 and 4-8 demonstrated significant inhibitory activities against α-amylase and α-glucosidase and the inhibitory potential of these compounds was comparable to the standard acarbose (10.98 ± 0.03 and 10.79 ± 0.17 µg/mL ± SEM, respectively). In addition, the impact of substituent on the inhibitory potential of these compounds was assessed to establish structure activity relationships. Studies in molecular simulations were conducted to better comprehend the binding properties of the compounds. All the synthesized compounds were extensively characterized with modern spectroscopic methods including 1H-NMR, 13C-NMR, FTIR, HR-MS and elemental analysis.
  13. Sundaram V, Ramanan RN, Selvaraj M, Ahemad N, Vijayaraghavan R, MacFarlane DR, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 3):126665.
    PMID: 37689282 DOI: 10.1016/j.ijbiomac.2023.126665
    Despite extensive studies revealing the potential of cholinium-based ionic liquids (ILs) in protein stabilization, the nature of interaction between ILs' constituents and protein residues is not well understood. In this work, we used a combined computational and experimental approach to investigate the structural stability of a peptide hormone, insulin aspart (IA), in ILs containing a choline cation [Ch]+ and either dihydrogen phosphate ([Dhp]-) or acetate ([Ace]-) as anions. Although IA remained stable in both 1 M [Ch][Dhp] and 1 M [Ch][Ace], [Dhp]- exhibited a much stronger stabilization effect than [Ace]-. Both the hydrophilic ILs intensely hydrated IA and increased the number of water molecules in IA's solvation shell. Undeterred by the increased number of water molecules, the native state of IA's hydrophobic core was maintained in the presence of ILs. Importantly, our results reveal the importance of IL concentration in the medium which was critical to maintain a steady population of ions in the microenvironment of IA and to counteract the denaturing effect of water molecules. Through molecular docking, we confirm that the anions exert the dominant effect on the structure of IA, while [Ch]+ have the secondary influence. The computational results were validated using spectroscopic analyses (ultra-violet, fluorescence, and circular dichroism) along with dynamic light scattering measurements. The extended stability of IA at 30 °C for 28 days in 1 M [Ch][Dhp] and [Ch][Ace] demonstrated in this study reveals the possibility of stabilizing IA using cholinium-based ILs.
  14. Kumar S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Selvaraj M, et al.
    Chem Cent J, 2017 Sep 18;11(1):89.
    PMID: 29086867 DOI: 10.1186/s13065-017-0322-0
    BACKGROUND: Heterocyclic pyrimidine nucleus, which is an essential base component of the genetic material of deoxyribonucleic acid, demonstrated various biological activities. A series of bis-pyrimidine Schiff bases were synthesized and screened for its antimicrobial and anticancer potentials. The molecular docking study was carried to find the interaction between active molecules with receptor.

    RESULTS: The structures of synthesized bis-pyrimidine Schiff bases were confirmed by spectral studies. The synthesized bis-pyrimidine derivatives were evaluated for their antimicrobial activity (MIC = µmol/mL) against selected Gram positive; Gram negative bacterial and fungal strains by tube dilution method. The anticancer activity (IC50 = µmol/mL) of the synthesized compounds was determined against human colorectal carcinoma (HCT116) cancer cell line by Sulforhodamine B (SRB) assay. Molecular docking studies provided information regarding the binding mode of active bis-pyrimidine Schiff bases with the cyclin-dependent kinase 8 (CDK8) receptor.

    CONCLUSIONS: The antimicrobial screening results indicated that compounds, q1 (MICbs = 0.83 µmol/mL), q16 (MICan = 1.54 µmol/mL and MICec = 0.77 µmol/mL), q1 and q19 (MICca = 0.41 µmol/mL) and q20 (MIC = 0.36 µmol/mL) are the most active ones. Compounds q1 (IC50 = 0.18 µmol/mL) have emerged as potent anticancer molecule against human colorectal carcinoma cancer cell line than the reference drug, 5-fluorouracil. Molecular docking studies indicated that compound q1 (the most active molecule) has the maximum hydrogen bond interaction (four) and π-π stacking (three) network among the bis-pyrimidine Schiff bases. Graphical abstract Graphical illustration of predicted binding mode of bis-pyrimidine Schiff bases in the active site of CDK8. a. Compound 1 (magenta color), b. Compound 5 (green color), c. Compound 8 (red color), d. Compound 13 (split pea color).

  15. Teh LK, Selvaraj M, Bannur Z, Ismail MI, Rafia H, Law WC, et al.
    J Pharm Pharm Sci, 2016;19(1):147-60.
    PMID: 27096699 DOI: 10.18433/J38G7X
    PURPOSE: The importance of HLA-B*15:02 genotyping to avoid carbamazepine induced SJS/TEN and molecular modeling to predict the role of HLA-B*15:0 and AEDs induced SJS/TEN are investigated.

    METHODS: DNA was extracted from eighty-six patients. The patients were genotyped by AS-PCR. Computational modeling of the HLA-B*15:02 followed by docking studies were performed to screen 26 AEDs that may induce ADR among HLA-B*15:02 carriers.

    RESULTS: Odd ratio for CBZ induced SJS/TEN and HLA-B*15:02 was 609.0 (95% CI: 23-15873; p=0.0002). Molecular modeling studies showed that acetazolamide, ethosuxiamide, lamotrigine, oxcarbazepine, phenobarbital, phenytoin, primidone and sodium-valproate may induce ADR in HLA-B*15:02 carriers alike CBZ. Conclusion. We confirmed HLA-B*15:02 as a predictor of SJS/TEN and recommend pre-screening. Computational prediction of DIHR is useful in personalized medicine.

  16. Chigurupati S, Selvaraj M, Mani V, Selvarajan KK, Mohammad JI, Kaveti B, et al.
    Bioorg Chem, 2016 08;67:9-17.
    PMID: 27231830 DOI: 10.1016/j.bioorg.2016.05.002
    The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68±0.13μM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77±0.25μM and IC50: 12.59±0.21μM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74±0.09μM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52±0.62μM and IC50: 13.13±0.85μM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents.
  17. Taha M, Ismail NH, Imran S, Selvaraj M, Rashwan H, Farhanah FU, et al.
    Bioorg Chem, 2015 Aug;61:36-44.
    PMID: 26073618 DOI: 10.1016/j.bioorg.2015.05.010
    Twenty five 4, 6-dichlorobenzimidazole derivatives (1-25) have been synthesized and evaluated against β-glucuronidase inhibitory activity. The compounds which actively inhibit β-glucuronidase activity have IC50 values ranging between 4.48 and 46.12 μM and showing better than standard d-saccharic acid 1,4 lactone (IC50=48.4 ± 1.25 μM). Molecular docking provided potential clues to identify interactions between the active molecules and the enzyme which further led us to identify plausible binding mode of all the benzimidazole derivatives. This study confirmed that presence of hydrophilic moieties is crucial to inhibit the human β-glucuronidase.
  18. Taha M, Baharudin MS, Ismail NH, Imran S, Khan MN, Rahim F, et al.
    Bioorg Chem, 2018 10;80:36-42.
    PMID: 29864686 DOI: 10.1016/j.bioorg.2018.05.021
    In search of potent α-amylase inhibitor we have synthesized eighteen indole analogs (1-18), characterized by NMR and HR-EIMS and screened for α-amylase inhibitory activity. All analogs exhibited a variable degree of α-amylase inhibition with IC50 values ranging between 2.031 ± 0.11 and 2.633 ± 0.05 μM when compared with standard acarbose having IC50 values 1.927 ± 0.17 μM. All compounds showed good α-amylase inhibition. Compound 14 was found to be the most potent analog among the series. Structure-activity relationship has been established for all compounds mainly based on bringing about the difference of substituents on phenyl ring. To understand the binding interaction of the most active analogs molecular docking study was performed.
  19. Rahim F, Taha M, Ullah H, Wadood A, Selvaraj M, Rab A, et al.
    Bioorg Chem, 2019 10;91:103112.
    PMID: 31349115 DOI: 10.1016/j.bioorg.2019.103112
    Alpha-amylase and urease enzyme over expression endorses various complications like rheumatoid arthritis, urinary tract infection, colon cancer, metabolic disorder, cardiovascular risk, and chronic kidney disease. To overcome these complications, we have synthesized new arylhydrazide bearing Schiff bases/thiazolidinone analogues as α-amylase and urease inhibitors. The analogues 1a-r were evaluated for α-amylase inhibitory potential. All analogues were found active and show IC50 value ranging between 0.8 ± 0.05 and 12.50 ± 0.5 μM as compare to standard acarbose (IC50 = 1.70 ± 0.10 μM). Among the synthesized analogs, compound 1j, 1r, 1k, 1e, 1b and 1f having IC50 values 0.8 ± 0.05, 0.9 ± 0.05, 1.00 ± 0.05, 1.10 ± 0.10, 1.20 ± 0.10 and 1.30 ± 0.10 μM respectively showed an excellent inhibitory potential. Analogs 2a-o were evaluated against urease activity. All analogues were found active and show IC50 value ranging between 4.10 ± 0.02 and 38.20 ± 1.10 μM as compare to standard thiourea (IC50 = 21.40 ± 0.21 μM). Among the synthesized analogs, compound 2k, 2a, 2h, 2j, 2f, 2e, 2g, 2b and 2l having IC50 values 4.10 ± 0.02, 4.60 ± 0.02, 4.70 ± 0.03, 5.40 ± 0.02, 6.70 ± 0.05, 8.30 ± 0.3, 11.20 ± 0.04, 16.90 ± 0.8 and 19.80 ± 0.60 μM respectively showed an excellent inhibitory potential. All compounds were characterized through 1H, 13C NMR and HR-EIMS analysis. Structure activity relationship of the synthesized analogs were recognized and confirmed through molecular docking studies.
  20. Taha M, Rahim F, Zaman K, Selvaraj M, Uddin N, Farooq RK, et al.
    Bioorg Chem, 2020 01;95:103555.
    PMID: 31911306 DOI: 10.1016/j.bioorg.2019.103555
    A series of twenty-six analogs of benzimidazole based oxadiazole have been synthesized and evaluated against alpha-glycosidase enzyme. Most the analogs showed excellent to good inhibitory potential. Among the screened analogs, analog 1, 2, 3 and 14 with IC50 values 4.6 ± 0.1, 9.50 ± 0.3, 2.6 ± 0.1 and 9.30 ± 0.4 µM respectively showedexcellent inhibitory potential than reference drug acarbose (IC50 = 38.45 ± 0.80 µM). Some of the analogs like 19, 21, 22 and 23 with methyl and methoxy substituent on phenyl ring show hydrophobic interaction and were found with no inhibitory potential. The binding interactions between synthesized analogs and ligands protein were confirmed through molecular docking study. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. These derivatives were synthesized by simple mode of synthesis like heterocyclic ring formation.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links