Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Rajendran K, Anwar A, Khan NA, Shah MR, Siddiqui R
    ACS Chem Neurosci, 2019 06 19;10(6):2692-2696.
    PMID: 30970208 DOI: 10.1021/acschemneuro.9b00111
    Primary amoebic meningoencephalitis (PAM), a deadly brain infection, is caused by brain-eating amoeba Naegleria fowleri. The current first line of treatment against PAM is a mixture of amphotericin B, rifampin, and miltefosine. Since, no single effective drug has been developed so far, the mortality rate is above 95%. Moreover, severe adverse side effects are associated with these drugs. Nanotechnology has provided several advances in biomedical applications especially in drug delivery and diagnosis. Herein, for the first time we report antiamoebic properties of cinnamic acid (CA) and gold nanoparticles conjugated with CA (CA-AuNPs) against N. fowleri. CA-AuNPs were successfully synthesized by sodium borohydride reduction of tetrachloroauric acid. Size and morphology were determined by atomic force microscopy (AFM) while the surface plasmon resonance band was analyzed by ultraviolet-visible (UV-vis) spectrophotometry for the characterization of the nanoparticles. Amoebicidal and cytopathogenicity (host cell cytotoxicity) assays revealed that both CA and CA-AuNPs displayed significant anti- N. fowleri properties ( P < 0.05), whereas nanoparticles conjugation further enhanced the anti- N. fowleri effects of CA. This study established a potential drug lead, while CA-AuNPs appear to be promising candidate for drug discovery against PAM.
  2. Anwar A, Siddiqui R, Hameed A, Shah MR, Khan NA
    Med Chem, 2020;16(7):841-847.
    PMID: 31544702 DOI: 10.2174/1573406415666190722113412
    BACKGROUND: Acanthamoeba is an opportunistic pathogen widely spread in the environment. Acanthamoeba causes excruciating keratitis which can lead to blindness. The lack of effective drugs and its ability to form highly resistant cyst are one of the foremost limitations against successful prognosis. Current treatment involves mixture of drugs at high doses but still recurrence of infection can occur due to ineffectiveness of drugs against the cyst form. Pyridine and its natural and synthetic derivatives are potential chemotherapeutic agents due to their diverse biological activities.

    OBJECTIVE: To study the antiamoebic effects of four novel synthetic dihydropyridine (DHP) compounds against Acanthamoeba castellanii belonging to the T4 genotype. Furthermore, to evaluate their activity against amoeba-mediated host cells cytopathogenicity as well as their cytotoxicity against human cells.

    METHODS: Dihydropyridines were synthesized by cyclic dimerization of alkylidene malononitrile derivatives. Four analogues of functionally diverse DHPs were tested against Acanthamoeba castellanii by using amoebicidal, encystation and excystation assays. Moreover, Lactate dehydrogenase assays were carried out to study cytopathogenicity and cytotoxicity against human cells.

    RESULTS: These compounds showed significant amoebicidal and cysticidal effects at 50 μM concentration, whereas, two of the DHP derivatives also significantly reduced Acanthamoebamediated host cell cytotoxicity. Moreover, these DHPs were found to have low cytotoxicity against human cells suggesting a good safety profile.

    CONCLUSION: The results suggest that DHPs have potential against Acanthamoeba especially against the more resistant cyst stage and can be assessed further for drug development.

  3. Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA
    Antimicrob Agents Chemother, 2015;60(3):1283-8.
    PMID: 26666949 DOI: 10.1128/AAC.01123-15
    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth assays. In contrast, chlorhexidine alone, at a similar concentration, showed limited effects. Notably, neomycin alone or conjugated with nanoparticles did not show amoebicidal or amoebistatic effects. Pretreatment of A. castellanii with gold-conjugated chlorhexidine nanoparticles reduced amoeba-mediated host cell cytotoxicity from 90% to 40% at 5 μM. In contrast, chlorhexidine alone, at similar concentrations, had no protective effects for the host cells. Similarly, amoebae treated with neomycin alone or neomycin-conjugated nanoparticles showed no protective effects. Overall, these findings suggest that gold-conjugated chlorhexidine nanoparticles hold promise in the improved treatment of A. castellanii keratitis.
  4. Anwar A, Siddiqui R, Shah MR, Khan NA
    PMID: 29967024 DOI: 10.1128/AAC.00630-18
    trans-Cinnamic acid (CA) is a natural organic compound. Using amoebicidal assays, for the first time we showed that CA affected the viability of the protist pathogen Acanthamoeba castellanii Conjugation with gold nanoparticles (AuNPs) enhanced the antiamoebic effects of CA. CA-coated AuNPs (CA-AuNPs) also exhibited significant excystation and encystation activity, compared to CA and AuNPs alone. Pretreatment of amoebae with CA-AuNPs inhibited A. castellanii-mediated host cell cytotoxicity. Moreover, CA-AuNPs exhibited potent effects against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1 and protected host cells against bacteria-mediated host cell death.
  5. Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R
    SAGE Open Med, 2018;6:2050312118781962.
    PMID: 30034805 DOI: 10.1177/2050312118781962
    Objectives: To synthesize novel compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin classes and test their potential anticancer properties.

    Methods: Several compounds were synthesized and their molecular identity was confirmed using nuclear magnetic resonance. Potential anticancer properties were determined using cytopathogenicity assays and growth inhibition assays using cervical cancer cells (HeLa). Cells were incubated with different concentrations of compounds belonging to Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins and effects were determined. HeLa cells cytopathogenicity was determined by measuring lactate dehydrogenase release using cytotoxicity detection assay. Growth inhibition assays were performed by incubating 50% semi-confluent HeLa cells with Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrin compounds and HeLa cell proliferation was observed. Growth inhibition and host cell death were compared in the presence and absence of drugs.

    Results: Cytopathogenicity assays showed that the selected compounds were cytotoxic against HeLa cells, killing up to 90% of cells. Growth inhibition assays exhibited 100% growth inhibition. These effects are likely via oxidative stress, production of reactive oxygen species, changes in cytosolic and intracellular calcium/adenine nucleotide homeostasis, inhibition of ribonucleotide reductase/cyclooxygenase and/or glutathione depletion.

    Conclusions: Benzodioxane, Naphthalene diimide, Aminophenol derivatives and Porphyrins exhibited potent anticancer properties. These findings are promising and should pave the way in the rationale development of anticancer drugs. Using different cancer cell lines, future studies will determine their potential as anti-tumour agents as well as their precise molecular mode of action.

  6. Hussain MA, Shah A, Jantan I, Tahir MN, Shah MR, Ahmed R, et al.
    J Nanobiotechnology, 2014;12:53.
    PMID: 25468206 DOI: 10.1186/s12951-014-0053-5
    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report green synthesis of silver nanoparticles (Ag NPs) mediated with dextran. Dextran was used as a stabilizer and capping agent to synthesize Ag NPs using silver nitrate (AgNO3) under diffused sunlight conditions.
  7. Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, et al.
    Int J Nanomedicine, 2015;10:2079-88.
    PMID: 25844038 DOI: 10.2147/IJN.S75874
    Polysaccharides are attracting the vigil eye of researchers in order to design the green synthesis of silver nanoparticles (Ag NPs) of diverse size, shape, and application. We report an environmentally friendly method to synthesize Ag NPs where no physical reaction conditions were employed. Hydroxypropylcellulose (HPC) was used as a template nanoreactor, stabilizer, and capping agent to obtain Ag NPs. Different concentrations of AgNO3 solutions (50 mmol, 75 mmol, and 100 mmol) were mixed with a concentrated aqueous solution of HPC and the progress of the reaction was monitored by noting color changes of the reaction mixture at different reaction times for up to 24 hours. Characteristic ultraviolet-visible spectroscopy (UV/Vis) absorption bands of Ag NPs were observed in the range of 388-452 nm. The morphology of the Ag NPs was studied by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy. The TEM images confirmed that the size of the Ag NPs was in the range of 25-55 nm. Powder X-ray diffraction studies showed that the crystal phase of the Ag NPs was face-centered cubic. The as-prepared Ag NPs were found to be stable, and no changes in size and morphology were observed after storage in HPC thin films over 1 year, as indicated by UV/Vis spectra. So, the present work furnishes a green and economical strategy for the synthesis and storage of stable Ag NPs. As-synthesized Ag NPs showed significant antimicrobial activity against different bacterial (Escherichia coli, Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Pseudomonas aeruginosa) and fungal strains (Actinomycetes and Aspergillus niger).
  8. Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, et al.
    Appl Microbiol Biotechnol, 2017 Jan;101(1):253-286.
    PMID: 27743045 DOI: 10.1007/s00253-016-7872-2
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential sources of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analysed. Among hundreds of compounds, only a few homologous compounds were identified that contained the isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole-containing analogs, sulfonamides, furanones, and flavanones and known to possess broad-spectrum antimicrobial properties and anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization, and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs.
  9. Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA
    AMB Express, 2017 Nov 21;7(1):210.
    PMID: 29164404 DOI: 10.1186/s13568-017-0515-x
    Biofilm formation by pathogenic bacteria is one of the major threats in hospital related infections, hence inhibiting and eradicating biofilms has become a primary target for developing new anti-infection approaches. The present study was aimed to develop novel antibiofilm agents against two Gram-positive bacteria; Staphylococcus aureus (ATCC 43300) and Streptococcus mutans (ATCC 25175) using gold nanomaterials conjugated with 3-(diphenylphosphino)propionic acid (Au-LPa). Gold nanomaterials with different sizes as 2-3 nm small and 9-90 nm (50 nm average size) large were stabilized by LPa via different chemical synthetic strategies. The nanomaterials were fully characterized using atomic force microscope (AFM), transmission electron microscope, ultraviolet-visible absorption spectroscopy, and Fourier transformation infrared spectroscopy. Antibiofilm activity of Au-LPa nanomaterials was tested using LPa alone, Au-LPa and unprotected gold nanomaterials against the both biofilm-producing bacteria. The results showed that LPa alone did not inhibit biofilm formation to a significant extent below 0.025 mM, while conjugation with gold nanomaterials displayed manifold enhanced antibiofilm potential against both strains. Moreover, it was also observed that the antibiofilm potency of the Au-LPa nanomaterials varies with size variations of nanomaterials. AFM analysis of biofilms further complemented the assay results and provided morphological aspects of the antibiofilm action of Au-LPa nanomaterials.
  10. Anwar A, Ting ELS, Anwar A, Ain NU, Faizi S, Shah MR, et al.
    AMB Express, 2020 Feb 03;10(1):24.
    PMID: 32016777 DOI: 10.1186/s13568-020-0960-9
    Acanthamoeba spp. are the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis (GAE). The current options to treat Acanthamoeba infections have limited success. Silver nanoparticles show antimicrobial effects and enhance the efficacy of their payload at the specific biological targets. Natural folk plants have been widely used for treating diseases as the phytochemicals from several plants have been shown to exhibit amoebicidal effects. Herein, we used natural products of plant or commercial sources including quercetin (QT), kolavenic acid (PGEA) isolated from plant extracts of Polyalthia longifolia var pendula and crude plant methanolic extract of Caesalpinia pulcherrima (CPFLM) as antiacanthamoebic agents. Furthermore, these plant-based materials were conjugated with silver nanoparticles (AgNPs) to determine the effects of the natural compounds and their nanoconjugates against a clinical isolate of A. castellanii from a keratitis patient (ATCC 50492) belonging to the T4 genotype. The compounds were conjugated with AgNPs and characterized by using ultraviolet visible spectrophotometry and atomic force microscopy. Quercetin coated silver nanoparticles (QT-AgNPs) showed characteristic surface plasmon resonance band at 443 nm and the average size distribution was found to be around 45 nm. The natural compounds alone and their nanoconjugates were tested for the viability of amoebae, encystation and excystation activity against A. castellanii. The natural compounds showed significant growth inhibition of A. castellanii while QT-AgNPs specifically exhibited enhanced antiamoebic effects as well as interrupted the encystation and excystation activity of the amoebae. Interestingly, these compounds and nanoconjugates did not exhibit in vitro cytotoxic effects against human cells. Plant-based compounds and extracts could be an interesting strategy in development of alternative therapeutics against Acanthamoeba infections.
  11. Abdelnasir S, Anwar A, Kawish M, Anwar A, Shah MR, Siddiqui R, et al.
    AMB Express, 2020 Jul 17;10(1):127.
    PMID: 32681358 DOI: 10.1186/s13568-020-01061-z
    Acanthamoeba castellanii can cause granulomatous amoebic encephalitis and Acanthamoeba keratitis. Currently, no single drug has been developed to effectively treat infections caused by Acanthamoeba. Recent studies have shown that drugs conjugated with nanoparticles exhibit potent in vitro antiamoebic activity against pathogenic free-living amoebae. In this study, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with metronidazole which were further loaded with amphotericin B to produce enhanced antiamoebic effects against Acanthamoeba castellanii. The results showed that metronidazole-nanoparticles-amphotericin B (Met-MNPs-Amp) significantly inhibited the viability of these amoebae as compared to the respective controls including drugs and nanoparticles alone. Met-MNPs-Amp exhibited IC50 at 50 μg/mL against both A. castellanii trophozoites and cysts. Furthermore, these nanoparticles did not affect the viability of rat and human cells and showed safe hemolytic activity. Hence, the results obtained in this study have potential utility in drug development against infections caused by Acanthamoeba castellanii. A combination of drugs can lead to successful prognosis against these largely neglected infections. Future studies will determine the value of conjugating molecules with diagnostic and therapeutic potential to provide theranostic approaches against these serious infections.
  12. Anwar A, Minhaz A, Hussain SS, Anwar A, Simjee SU, Ishaq M, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jan 05;206:135-140.
    PMID: 30096697 DOI: 10.1016/j.saa.2018.07.099
    Gold nanoparticles (AuNPs) stabilized by new cationic 1‑(3‑(acetylthio)propyl)pyrazin‑1‑ium ligand (PPTA) were synthesized. AuNPs stabilized by PPTA (PPTA-AuNPs) were found to be spherical and polydispersed with the average size of 60 nm. Human neuroblastoma (SHSY-5Y) cells permeability of PPTA-AuNPs was found to be a key feature to study the intracellular quenching of Fe(III) proliferative activity. In vitro MTT assay revealed non-cytotoxicity of PPTA and PPTA-AuNPs at 100 μM concentration, while treatment of 100 μM of Fe(III) with SHSY-5Y cells resulted into higher cells viability. Contrary, a mixture of 1:1 Fe(III) with PPTA-AuNPs showed no change in the viability of cells at same concentration which suggests the intracellular complexation and recognition of Fe(III) by PPTA-AuNPs. AFM morphological analysis of SHSY-5Y cells also supported the MTT assay results, and it is safe to conclude that PPTA-AuNPs can be used as Fe(III) probes in living cells. In addition, Fe(III) caused a significant decrease in the absorbance of surface plasmon resonance (SPR) band of PPTA-AuNPs in a wide range of concentration and pH, with limit of detection 4.3 μM. Moreover, the specific response of PPTA-AuNPs towards Fe(III) was unaffected by the interference of other metals and components of real samples of tap water.
  13. Ali H, Kabir N, Shah MR, Muhammad A, Ali S, Mehmood S, et al.
    Toxicol Res (Camb), 2016 Nov 01;5(6):1688-1698.
    PMID: 30090468 DOI: 10.1039/c6tx00165c
    This study investigated the molecular mechanism(s) of the protective effects of a C-alkylated flavonoid, viscosine on an animal model of CCl4-induced hepatotoxicity. Viscosine at 20, 50 and 100 mg kg-1 was orally administered in a dose dependent manner per day for 3 days before the CCl4 (1 : 1 v/v in olive oil, 1 ml kg-1) treatment and 2 days after the treatment. Hepatoprotection was assessed in terms of reduction in serum enzyme activities (ALT, AST, and ALP) that occur after CCl4 injury, and by histopathology and immunohistochemistry. The rise in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in CCl4-intoxicated rats was markedly suppressed by viscosine in a concentration dependent manner. The decrease in the activity of hepatic antioxidant enzyme, SOD, was significantly prevented by viscosine, likewise gradually the levels of MDA and GSH were also normalized compared to silymarin. Viscosine also reduced the CCl4-induced damaged area from 2% to 0% as assessed by histopathology and prevented the mixed inflammatory infiltrate. Viscosine attenuated the inflammation in the liver around the injured central vein region by downregulating the CCl4 induced activation of hepatic CD68+ macrophages, thereby reducing their number as well. The expression of inducible nitric oxide synthase (iNOS) was more potentially suppressed by viscosine compared to the FDA approved positive control silymarin. The results of this study indicate that viscosine could be effective in protecting the liver from acute CCl4-induced injury. The hepatoprotective mechanisms of viscosine may be related to the free radical scavenging and attenuation of oxidative stress, as well as to the inhibition of inflammatory response in the liver. Here, we are proposing a novel mechanism of action of viscosine and suggesting that it may be a safe and better in vivo antioxidant.
  14. Anwar A, Abdalla SAO, Aslam Z, Shah MR, Siddiqui R, Khan NA
    Parasitol Res, 2019 Jul;118(7):2295-2304.
    PMID: 31093751 DOI: 10.1007/s00436-019-06329-3
    Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.
  15. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, et al.
    Sci Rep, 2019 02 28;9(1):3122.
    PMID: 30816269 DOI: 10.1038/s41598-019-39528-0
    Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
  16. Hussain MA, Ahmed D, Anwar A, Perveen S, Ahmed S, Anis I, et al.
    Int Microbiol, 2019 Jun;22(2):239-246.
    PMID: 30810990 DOI: 10.1007/s10123-018-00043-3
    Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 μg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations.
  17. Iqbal K, Abdalla SAO, Anwar A, Iqbal KM, Shah MR, Anwar A, et al.
    Antibiotics (Basel), 2020 May 25;9(5).
    PMID: 32466210 DOI: 10.3390/antibiotics9050276
    The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
  18. Siddiqui RA, Simjee SU, Kabir N, Ateeq M, Shah MR, Hussain SS
    Mol Cell Biochem, 2019 Jan;450(1-2):43-52.
    PMID: 29790115 DOI: 10.1007/s11010-018-3371-3
    The protective activity of N-(2-hydroxyphenyl)acetamide (NA-2) and NA-2-coated gold nanoparticles (NA-2-AuNPs) in glycerol-treated model of acute kidney injury (AKI) in mice was investigated. NA-2 (50 mg/kg) and NA-2-AuNPs (30 mg/kg) were given to the animals for four days followed by 24-h water deprivation and injection of 50% glycerol (10 ml/kg im). The animals were sacrificed on the next day. Blood and kidneys were collected for biochemical investigations (urea and creatinine), histological studies (hematoxylin and eosin; and periodic acid-Schiff staining), immunohistochemistry (actin and cyclooxygenase-2, Cox-2), and real-time RT-PCR (inducible nitric oxide synthase, iNOS; nuclear factor-κB p50, NFκB; hemeoxygenase-1, HO-1; and kidney injury molecule-1, Kim-1). NA-2 protected renal tubular necrosis and inflammation, though the result of NA-2-AuNPs was better than compound alone and it also exhibited the activity at far less dose. The test compound and its gold nano-formulation decreased the levels of serum urea and creatinine level in the treated animals. Both NA-2 and NA-2-AuNPs also conserved actin cytoskeleton, and lowered COX-2 protein expression. Moreover, the mRNA expressions of iNOS and NFkB p50 were down-regulated, and HO-1 and Kim-1 genes were up-regulated. We conclude that NA-2 and NA-2-AuNPs ameliorates kidney inflammation and injury in glycerol-induced AKI animal model via anti-oxidant and anti-inflammatory mechanisms which make it a suitable candidate for further studies. We believe that these findings will contribute in the understanding of the mechanism of action of paracetamol-like drugs and can be considered for clinical research for the prevention of AKI.
  19. Anwar A, Siddiqui R, Hussain MA, Ahmed D, Shah MR, Khan NA
    Parasitol Res, 2018 Jan;117(1):265-271.
    PMID: 29218442 DOI: 10.1007/s00436-017-5701-x
    Infectious diseases are the leading cause of morbidity and mortality, killing more than 15 million people worldwide. This is despite our advances in antimicrobial chemotherapy and supportive care. Nanoparticles offer a promising technology to enhance drug efficacy and formation of effective vehicles for drug delivery. Here, we conjugated amphotericin B, nystatin (macrocyclic polyenes), and fluconazole (azole) with silver nanoparticles. Silver-conjugated drugs were synthesized successfully and characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Conjugated and unconjugated drugs were tested against Acanthamoeba castellanii belonging to the T4 genotype using amoebicidal assay and host cell cytotoxicity assay. Viability assays revealed that silver nanoparticles conjugated with amphotericin B (Amp-AgNPs) and nystatin (Nys-AgNPs) exhibited significant antiamoebic properties compared with drugs alone or AgNPs alone (P 
  20. Anwar A, Khalid S, Perveen S, Ahmed S, Siddiqui R, Khan NA, et al.
    J Nanobiotechnology, 2018 Jan 29;16(1):6.
    PMID: 29378569 DOI: 10.1186/s12951-017-0332-z
    BACKGROUND: Gold nanoparticles are useful candidate for drug delivery applications and are associated with enhancement in the bioavailability of coated drugs and/or therapeutic agent. Since, heterocyclic compounds are known to exhibit antimicrobial potential against variety of pathogens, we designed this study to evaluate the antibacterial effects of gold nanoparticles conjugation with new synthesized cationic ligand; 4-Dimethyl aminopyridinium propylthioacetate (DMAP-PTA) in comparison with pure compound and antibiotic drug Pefloxacin. Antibacterial activity of DMAP-PTA coated gold nanoparticles was investigated against a fecal strain of E. coli (ATCC 8739).

    RESULTS: A new dimethyl aminopyridine based stabilizing agent named as DMAP-PTA was synthesized and used for stabilization of gold nanoparticles. Gold nanoparticles coated with DMAP-PTA abbreviated as DMAP-PTA-AuNPs were thoroughly characterized by UV-visible, FT-IR spectroscopic methods and transmission electron microscope before biological assay. DMAP-PTA, DMAP-PTA-AuNPs and Pefloxacin were examined for their antibacterial potential against E. coli, and the minimum inhibitory concentration (MIC) was determined to be 300, 200 and 50 µg/mL respectively. Gold nanoparticles conjugation was found to significantly enhance the antibacterial activity of DMAP-PTA as compared to pure compound. Moreover, effects of DMAP-PTA-AuNPs on the antibacterial potential of Pefloxacin was also evaluated by combination therapy of 1:1 mixture of DMAP-PTA-AuNPs and Pefloxacin against E. coli in a wide range of concentrations from 5 to 300 µg/mL. The MIC of Pefloxacin + DMAP-PTA-AuNPs mixture was found to be 25 µg/mL as compared to Pefloxacin alone (50 µg/mL), which clearly indicates that DMAP-PTA-AuNPs increased the potency of Pefloxacin. AFM analysis was also carried out to show morphological changes occur in bacteria before and after treatment of test samples. Furthermore, DMAP-PTA-AuNPs showed high selectivity towards Pefloxacin in spectrophotometric drug recognition studies which offers tremendous potential for analytical applications.

    CONCLUSIONS: Gold nanoparticles conjugation was shown to enhance the antibacterial efficacy of DMAP-PTA ligand, while DMAP-PTA-AuNPs also induced synergistic effects on the potency of Pefloxacin against E. coli. DMAP-PTA-AuNPs were also developed as Pefloxacin probes in recognizing the drug in blood and water samples in the presence of other drugs.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links