Displaying all 16 publications

Abstract:
Sort:
  1. Wong YM, Siow LF
    J Food Sci Technol, 2015 May;52(5):3086-92.
    PMID: 25892813 DOI: 10.1007/s13197-014-1362-2
    Red-fleshed dragon fruit (Hylocereus polyrhizus) is rich in antioxidants. The aim of this study was to determine the effects of heat pasteurization, pH adjustment, ascorbic acid addition as well as storage under agitation and light or dark condition on betacyanin content in red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate. The concentrate was produced by concentrating clarified red-fleshed dragon fruit juice in a rotary evaporator at 40 °C. UV-Visible spectrophotometer was used for analyzing betacyanin content. Addition of 0.25 % ascorbic acid, pH 4.0, and pasteurization at 65 °C for 30 min were selected as the best processing conditions to retain betacyanin content in red-fleshed dragon fruit juice. Storage at the agitation speed of 220 rpm showed that the concentrated samples had higher betacyanin stability compared to juice, while both juice and concentrate had almost similar betacyanin stability when tested for storage in the presence of light. In summary, ascorbic acid stabilized betacyanin in both juice and concentrate at agitated or non-agitated conditions. In contrast, light degraded betacyanin in both juice and concentrate models.
  2. How YK, Siow LF
    J Food Sci Technol, 2020 Dec;57(12):4637-4648.
    PMID: 33087975 DOI: 10.1007/s13197-020-04501-7
    This study aims to investigate the antioxidant, physicochemical and functional properties of convection-, vacuum-and freeze-dried stink bean (Parkia speciosa) powder upon storage at various relative humidity (RH) at room temperature, 25 °C. Both convection- and vacuum-dried samples exhibited stronger DPPH free radical scavenging activity (7.62 ± 1.77 and 10.38 ± 0.63 mg AA/g·db respectively) and ferric ion-chelating (FIC) ability (16.55 ± 1.29 and 18.88 ± 2.36 mg/mL·db respectively) compared to the fresh and freeze-dried samples. Stink bean powder had low water solubility index, water holding capacity and oil holding capacity but it had the potential as emulsifier in food systems. Apparent formation of clumps were observed after 25-day storage of powder at RH of 43%, 54% or 75% due to absorption of moisture from surroundings. Generally, the antioxidant properties and colour of the powders deteriorated after storage especially at higher RH. Vacuum drying would be the most suitable drying method to produce stink bean powder because of its enhanced antioxidant capacities, light colour and relatively more stable after storage.
  3. Lee SY, Ferdinand V, Siow LF
    Front Pharmacol, 2022;13:1003209.
    PMID: 36408266 DOI: 10.3389/fphar.2022.1003209
    Chamomile (Matricaria chamomilla L.) is a traditional medicinal plant used to treat hay fever, inflammation, muscle spasms, menstrual disorders, insomnia ulcers, wounds, gastrointestinal disorders, rheumatic pain, and hemorrhoids. Dried chamomile flowers have a longer shelf life and the dried extract in form of powder offers much flexibility for new therapeutic formulations as it could be used as a replacement for liquid extract and serve as a shelf-stable ingredient in new applications. This study aims to determine the effect of drying methods, i.e., convection oven-drying at 45 °C, freeze-drying at -50°C, and spray-drying at 140°C at 10.5 and 12 ml/min, respectively) on powder yield, physicochemical properties (moisture content, water activity, and color attributes), and total polyphenol content of chamomile extract powder. Our findings showed that spray-drying conducted at 140°C, 12 ml/min resulted in the lowest yield of powder (16.67%) compared to convection oven-drying (90.17%) and freeze-drying (83.24%). Decreasing the feed flow rate to 10.5 ml/min during spraying caused an increase in powder yield to 26.99%. The moisture content of spray-dried chamomile extract powder obtained at 140°C, 10.5 ml/min was higher (11.00%) compared to that of convection oven-dried (8.50%) and freeze-dried (7.50%). Both convection oven-dried and freeze-dried chamomile extract powder displayed no significant difference (p > 0.05) in moisture content. The higher feed flow rate (12 ml/min) in spray-drying also led to an increase in the moisture content of chamomile extract powder to 12.00%. The higher residual moisture found in the spray-dried samples resulted in partial agglomeration of particles. In terms of water activity, freeze-dried chamomile extract powder was found to have the highest water activity (0.63) compared to that of convection oven-dried (0.52), spray-dried at 140°C, 10.5 ml/min (0.57), and spray-dried at 140°C, 12 ml/min (0.58). Spray-dried and freeze-dried chamomile extract powder with high moisture content and water activity could be highly susceptible to microbial growth. In terms of color attributes, higher drying temperature in spray-drying led to darker, redder, and more yellowish chamomile extract powder that could be caused by heat-induced Maillard reaction and caramelization. Since lower drying temperature was used in both convection oven-drying and freeze-drying, both convection oven-dried (56.94 mg GAE/g powder) and freeze-dried chamomile extract powder (55.98 mg GAE/g powder) were found to have higher total polyphenol content compared to those of spray-dried (42.79-46.79 mg GAE/g powder). The present findings allow us to understand the effect of drying methods on the properties of chamomile extract powder and provide a better drying option to dry chamomile extract. Due to higher powder yield with ideal powder properties such as low moisture content and water activity, desirable color, and high total polyphenol content obtained from convection oven-drying, convection oven-drying was a better option than freeze-drying and spray-drying for drying chamomile extract.
  4. Ang SS, Thoo YY, Siow LF
    Food Bioproc Tech, 2023 Jun 13.
    PMID: 37363383 DOI: 10.1007/s11947-023-03140-y
    Despite the multiple health benefits, natural flavonoid apigenin has poor aqueous solubility that restricts its delivery in foods. This study investigated the potential of spray-dried chitosan-coated liposomes prepared from scalable methods for the food industry as the delivery carriers for apigenin. Apigenin-loaded small unilamellar liposomes produced from ethanol injection had an encapsulation efficiency of 74.88 ± 5.31%. They were electrostatically stabilised via chitosan coating (0.25% w/v) and spray-dried. Spray-dried chitosan-coated apigenin liposomes (SCAL) exhibited the following powder characteristics: yield 66.62 ± 3.08%, moisture content 4.33 ± 0.56%, water activity 0.2242 ± 0.0548, particle size 10.97 ± 1.55 μm, nearly spherical morphology with wrinkles and dents under microscopic observation. Compared with the unencapsulated apigenin, SCAL demonstrated improved aqueous solubility (10.22 ± 0.18 mg/L), higher antioxidant capacity, and stability against simulated gastrointestinal digestion. The chitosan coating gave a slower in-vitro release of apigenin in SCAL (77.0 ± 6.2%) than that of uncoated apigenin liposomes (94.0 ± 5.3%) at 12 h. The apigenin release kinetics from SCAL could be represented by the Korsmeyer-Peppas model (R2 = 0.971). These findings suggest that SCAL could be a promising delivery system of apigenin for functional food applications.
  5. Tan HT, Dykes GA, Wu TY, Siow LF
    Appl Biochem Biotechnol, 2013 Aug;170(7):1602-13.
    PMID: 23709290 DOI: 10.1007/s12010-013-0298-8
    Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4.
  6. Oh HKF, Siow LF, Lim YY
    J Food Biochem, 2019 07;43(7):e12856.
    PMID: 31353691 DOI: 10.1111/jfbc.12856
    Different drying methods and blanching were investigated as to their effects on antioxidant and oxidase activities of Thunbergia laurifolia leaves. Results showed that oven-drying had the highest degradation of total phenolic content (TPC) and antioxidant activity at >85%, while freeze-drying had the lowest at <20%. However, inactivation of oxidase enzymes by blanching at 100°C resulted in a lesser decrease in TPC for oven-drying at 50 and 100°C (51% and 65%, respectively), indicating the importance of inactivating the oxidase enzymes for lower degradation of phenolics on drying. The high-performance liquid chromatography analysis showed that its major antioxidant, rosmarinic acid, degraded tremendously in the presence of oxidase enzymes, but only degraded slightly upon inactivation of oxidase enzymes. Hence, this work showed that by controlling the enzymatic activity, the preservation of phenolics with specific bioactivity in herbal tea leaves can be achieved. PRACTICAL APPLICATIONS: Thunbergia laurifolia leaves have been frequently consumed in the form of a tea or pill due to its medicinal properties. Processing of fresh herbal plant leaves by drying is required to preserve antioxidant phenolic compounds and quality of the plant leaves. Although the drying effects on the antioxidant properties have been studied, the factors that cause the change in properties have not been investigated in-depth. Controlling the factors that affect the phenolic content can help to preserve the beneficial antioxidants when processing the leaves by drying. The result of this study will be of relevance and beneficial to the herbal tea industry.
  7. Ho S, Thoo YY, Young DJ, Siow LF
    Food Chem, 2019 Mar 01;275:594-599.
    PMID: 30724238 DOI: 10.1016/j.foodchem.2018.09.117
    Catechin is astringent in taste, sparingly soluble in water and sensitive to oxygen, light and pH. These properties restrict its application in food products. The present study investigated the stability of inclusion complex (IC) and catechin in various food matrices and investigated in vitro recovery profile of catechin and IC in liquid, semi-solid and solid food matrices. Besides, the sensory profile of IC added yogurt was also determined. Results showed that IC and catechin was more stable in solid matrix compared to semi-solid and liquid matrices. IC added in milk and yogurt show the highest percentage recovery of catechin compared to IC added in cheese and catechin added in all the matrices in in vitro digestive system. Through IC, β-CD masked the bitterness of catechin. These results suggest that protection of antioxidant such as catechin by β-CD inclusion complex may have applications in functional foods and health supplements.
  8. Selby-Pham SNB, Siow LF, Bennett LE
    Food Funct, 2020 Jan 29;11(1):907-920.
    PMID: 31942898 DOI: 10.1039/c9fo01149h
    After oil extraction, palm fruit biomass contains abundant water-soluble phytochemicals (PCs) with proven bioactivity in regulating oxidative stress and inflammation (OSI). For optimal bioefficacy following oral consumption, the pharmacokinetic plasma peak (Tmax) should be bio-matched with the onset of OSI, which can be predicted from the Phytochemical Absorption Prediction (PCAP) model and methodology. Predicted absorption and potential for regulation of OSI by measures of total phenolic content, antioxidant capacity and hydrogen peroxide production capacity, were applied to characterise eight extracts from mesocarp fibre and kernel shells of oil-depleted palm fruits. Results indicated post-consumption absorption Tmax ranges of 0.5-12 h and 2-6 h for intake in liquid and solid forms, respectively, and generally high antioxidant activity of the extracts. The research supports that PC extracts of palm fruit biomass have broad potential uses for human health as dietary antioxidants in foods, supplements or functional beverages.
  9. Thilakarathna RCN, Siow LF, Tang TK, Lee YY
    J Food Sci Technol, 2023 Apr;60(4):1222-1236.
    PMID: 36936117 DOI: 10.1007/s13197-022-05359-7
    Oil has extensively been extracted from oil-bearing crops and traded globally as a major food commodity. There is always a huge demand from the fats and oils industries to increase oil yield because of profitability benefits. If extraction is conducted under mild operating conditions to preserve and improve the oil quality, then it would be an added value. Ultrasound that works on the cavitational action helps to fulfil the gap. Ultrasound is gaining tremendous interest as an alternative to replace the current conventional extractions approach because of its multiple benefits. Cavitation generated by ultrasound eases the release of oil from cell matrices, thereby allowing the extraction to be carried out under mild processing conditions. The effect enhances the oil yield whilst preserving the quality of the oil. In ultrasound, green solvents can be used to replace toxic organic solvents. Recent up-to-date approaches utilised a combination of ultrasound with enzyme, microwave and supercritical technology to further enhance the oil extraction. This review highlights a comprehensive work of the impact of ultrasound and ultrasound in combination with other technologies on oil extraction, which emphasises the extraction yield and physicochemical properties of the oil, such as fatty acid composition, oxidative stability with the retention of the lipophilic phytochemicals and iodine, saponification values and colour parameters. Understanding of ultrasonication techniques for oil extraction served to be essential and useful information for the fats and oils scientists from academia and industries to explore the possibility of employing a sustainable and mild approaches for extracting oil from various crops.
  10. Ooi TS, Ting ASY, Siow LF
    J Food Sci Technol, 2022 Jul;59(7):2714-2723.
    PMID: 35734109 DOI: 10.1007/s13197-021-05292-1
    Volatile organic compounds (VOCs) are important to determine the aroma and sensory perception of cocoa. Starter cultures can modulate the volatile profile of cocoa beans during fermentation. This study aimed to determine the VOCs and sensory of chocolates produced using cocoa beans fermented with yeast starters (Pichia kudriavzevii (MH979681), Hanseniaspora thailandica (MH979675) and the mixture of the two yeasts (Mix)). The VOCs of chocolates were determined by Head-Space Solid Phase Microextraction followed by Gas Chromatography-Mass Spectrophotometry. Sensory analysis was determined by using trained panels. VOCs profiles of chocolates produced using beans fermented with HT, PK or Mix were noticeably different from Ghana and control chocolates (no starter). The addition of yeast starters during cocoa fermentation produced chocolates that were preferred by trained panels. Bitterness and astringency were the more intense flavour attributes in chocolates produced using cocoa beans added with yeast starters. The chocolate produced using cocoa beans fermented with PK was the most acidic; whereas chocolate produced using beans fermented with Mix had the sweetest taste. The addition of PK or HT is helpful in producing chocolate with a distinct flavour.
  11. Wong KY, Thoo YY, Tan CP, Siow LF
    Food Chem, 2024 Jan 15;431:137118.
    PMID: 37586229 DOI: 10.1016/j.foodchem.2023.137118
    This study aims to evaluate the effect of sucrose replacer mixtures (erythritol, mannitol, or tagatose in combination with inulin or polydextrose) on the crystal morphology, particle size distribution, rheology, melting properties, and fat polymorphism of dark compound chocolate. The result showed that the replacer mixture's hygroscopicity, particle size, and sugar crystal shape might significantly impact dark compound chocolate's rheological and textural properties but had no substantial impact on the melting properties and fat crystallization. Mannitol-containing samples exhibited the highest rheological value, likely related to their high moisture content, small particle size, and elongated crystal shape. Due to the similar specific surface area and comparable D90 value, the sample containing erythritol-polydextrose mixture resulted in a similar (P ≥ 0.05) Casson yield value (46.184 ± 2.45 Pa) compared to the sample containing sucrose (38.348 ± 1.68 Pa). It could be a potential sucrose replacer in the dark compound chocolate.
  12. Tong SC, Siow LF, Tang TK, Lee YY
    PMID: 36377721 DOI: 10.1080/10408398.2022.2143477
    As a nutrient rich emulsion extracted from plant materials, plant-based milk (PBM) has been the latest trend and hot topic in the food industry due to the growing awareness of consumers toward plant-based products in managing the environmental (carbon footprint and land utility), ethical (animal well-fare) and societal (health-conscious) issues. There have been extensive studies and reviews done to discuss the distinct perspective of PBM including its production, health effects and market acceptance. However, not much has been emphasized on the valuable antioxidants present in PBM which is one of the attributes making them stand apart from dairy milk. The amounts of antioxidants in PBM are important. They offered tremendous health benefits in maintaining optimum health and reducing the risk of various health disorders. Therefore, enhancing the extraction of antioxidants and preserving their activity during production and storage is important. However, there is a lack of a comprehensive review of how these antioxidants changes in response to different processing steps involved in PBM production. Presumably, antioxidants in PBM could be potentially lost due to thermal degradation, oxidation or leaching into processing water. Hence, this paper aims to fill the gaps by addressing an extensive review of how different production steps (germination, roasting, soaking, blanching, grinding and filtration, and microbial inactivation) affect the antioxidant content in PBM. In addition, the effect of different microbial inactivation treatments (thermal or non-thermal processing) on the alteration of antioxidant in PBM was also highlighted. This paper can provide useful insight for the industry that aims in selecting suitable processing steps to produce PBM products that carry with them a health declaration.
  13. Thilakarathna RCN, Siow LF, Tang TK, Chan ES, Lee YY
    Ultrason Sonochem, 2023 Jan;92:106280.
    PMID: 36587443 DOI: 10.1016/j.ultsonch.2022.106280
    Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded 
  14. Loow YL, Wu TY, Tan KA, Lim YS, Siow LF, Jahim JM, et al.
    J Agric Food Chem, 2015 Sep 30;63(38):8349-63.
    PMID: 26325225 DOI: 10.1021/acs.jafc.5b01813
    Currently, the transformation of lignocellulosic biomass into value-added products such as reducing sugars is garnering attention worldwide. However, efficient hydrolysis is usually hindered by the recalcitrant structure of the biomass. Many pretreatment technologies have been developed to overcome the recalcitrance of lignocellulose such that the components can be reutilized more effectively to enhance sugar recovery. Among all of the utilized pretreatment methods, inorganic salt pretreatment represents a more novel method and offers comparable sugar recovery with the potential for reducing costs. The use of inorganic salt also shows improved performance when it is integrated with other pretreatment technologies. Hence, this paper is aimed to provide a detailed overview of the current situation for lignocellulosic biomass and its physicochemical characteristics. Furthermore, this review discusses some recent studies using inorganic salt for pretreating biomass and the mechanisms involved during the process. Finally, some prospects and challenges using inorganic salt are highlighted.
  15. Lee CBTL, Wu TY, Ting CH, Tan JK, Siow LF, Cheng CK, et al.
    Bioresour Technol, 2019 Apr;278:486-489.
    PMID: 30711220 DOI: 10.1016/j.biortech.2018.12.034
    The performances of various anhydrous and aqueous choline chloride-dicarboxylic acid based deep eutectic solvents (DESs) were evaluated for furfural production from oil palm fronds without any additional catalyst. The effects of different carbon chain length dicarboxylic acids and water content in each DES on furfural production were investigated. Oil palm fronds, DES and water (0-5 ml) were mixed and reacted in an oil bath (60-300 min). Reacted oil palm fronds had the potential to be reused as cellulose-rich-valuable by-products. At 100 °C, aqueous choline chloride-oxalic acid (16.4 wt% H2O) produced the highest furfural yield of 26.34% and cellulose composition up to 72.79% in the reacted oil palm fronds. Despite operating at suitable reaction duration for dicarboxylic acid with longer carbon chain length, aqueous choline chloride-malonic acid and aqueous choline chloride-succinic acid performed poorly with furfural yield of less than 1%.
  16. Loow YL, Wu TY, Yang GH, Ang LY, New EK, Siow LF, et al.
    Bioresour Technol, 2018 Feb;249:818-825.
    PMID: 29136937 DOI: 10.1016/j.biortech.2017.07.165
    Deep eutectic solvents (DESs) have received considerable attention in recent years due to their low cost, low toxicity, and biodegradable properties. In this study, a sequential pretreatment comprising of a DES (choline chloride:urea in a ratio of 1:2) and divalent inorganic salt (CuCl2) was evaluated, with the aim of recovering xylose from oil palm fronds (OPF). At a solid-to-liquid ratio of 1:10 (w/v), DES alone was ineffective in promoting xylose extraction from OPF. However, a combination of DES (120°C, 4h) and 0.4mol/L of CuCl2 (120°C, 30min) resulted in a pretreatment hydrolysate containing 14.76g/L of xylose, remarkably yielding 25% more xylose than the CuCl2-only pretreatment (11.87g/L). Characterization studies such as FE-SEM, BET, XRD, and FTIR confirmed the delignification of OPF when DES was implemented. Thus, the use of this integrated pretreatment system enabled xylose recoveries which were comparable with other traditional pretreatments.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links