OBJECTIVES: We explored the possible preventive/therapeutic effects of orlistat (a medication prescribed for weight loss) on obesity-induced steroidogenesis and spermatogenesis decline.
MATERIALS AND METHODS: Twenty-four adult male Sprague Dawley rats weighing 250-300 g were randomized into four groups (n = 6/group), namely; normal control, high-fat diet, high-fat diet plus orlistat preventive group and high-fat diet plus orlistat treatment group. Orlistat (10 mg/kg/b.w./d suspended in distilled water) was either concurrently administered with high-fat diet for 12 weeks (high-fat diet plus orlistat preventive group) or administered from week 7-12 post- high-fat diet feeding (high-fat diet plus orlistat treatment group). Thereafter, serum, testes and epididymis were collected for analyses.
RESULTS: Obesity increased serum leptin and decreased adiponectin levels, decreased serum and intra-testicular levels of follicle stimulating hormone, luteinising hormone and testosterone, sperm count, motility, viability, normal morphology and epididymal antioxidants, but increased epididymal malondialdehyde level and sperm nDNA fragmentation. Testicular mRNA transcript levels of androgen receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, cytochrome P450 enzyme (CYP11A1), 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were significantly decreased in the testes of the high-fat diet group. Further, the levels of steroidogenic acute regulatory protein protein and enzymatic activities of CYP11A1, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were also significantly decreased in the testes of the high-fat diet group. Treatment with orlistat significantly decreased leptin and increased adiponectin levels, improved sperm parameters, decreased sperm DNA fragmentation, increased the levels of steroidogenic hormones, proteins and associated genes in high-fat diet-induced obese male rats, with the preventive group (high-fat diet plus orlistat preventive group) having better results relative to the treatment group (high-fat diet plus orlistat treatment group).
DISCUSSION AND CONCLUSION: Orlistat attenuated impaired spermatogenesis and steroidogenesis decline by up-regulating steroidogenic genes. This may not be unconnected to its significant effect in lowering serum leptin levels, since the hormone is known to dampen fertility potential. Therefore, orlistat may improve fertility potential in overweight/obese men.
OBJECTIVES: The present study investigated the protective effect of Malaysian propolis on diabetes-induced subfertility/infertility. Additionally, its combined beneficial effects with metformin were investigated.
MATERIALS AND METHODS: Forty adult male Sprague Dawley rats were randomly assigned into five groups, namely normal control, diabetic control, diabetic + Malaysian propolis (300 mg/k.g. b.w.), diabetic + metformin (300 mg/kg b.w.) and diabetic + Malaysian propolis + metformin. Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.) and treatment lasted for 4 weeks. During the 4th week, mating behavioural experiments were performed using sexually receptive female rats. Thereafter, fertility parameters were assessed in the female rats.
RESULTS: Malaysian propolis increased serum and intratesticular free testosterone levels, up-regulated the mRNA levels of AR and luteinizing hormone receptor, up-regulated the mRNA and protein levels of StAR, CYP11A1, CYP17A1, 3β-HSD and 17β-HSD in the testes of diabetic rats. Furthermore, Malaysian propolis up-regulated testicular MCT2, MCT4 and lactate dehydrogenase type C mRNA levels, in addition to improving sperm parameters (count, motility, viability and normal morphology) and decreasing sperm nDNA fragmentation in diabetic rats. Malaysian propolis improved mating behaviour by increasing penile guanosine monophosphate levels. Malaysian propolis also improved fertility outcome as seen with decreases in pre- and post-implantation losses, increases in gravid uterine weight, litter size per dam and foetal weight. Malaysian propolis's effects were comparable to metformin. However, their combination yielded better results relative to the monotherapeutic interventions.
CONCLUSION: Malaysian propolis improves fertility potential in diabetic state by targeting steroidogenesis, testicular lactate metabolism, spermatogenesis and mating behaviour, with better effects when co-administered with metformin. Therefore, Malaysian propolis shows a promising complementary effect with metformin in mitigating Diabetes mellitus-induced subfertility/infertility.