METHODS: Factors associated with survival and failure were analyzed using Cox proportional hazards and discrete time conditional logistic models.
RESULTS: TDR, found in 60 (4.1%) of 1471 Asian treatment-naive patients, was one of the significant predictors of failure. Patients with TDR to >1 drug in their regimen were >3 times as likely to fail compared to no TDR.
CONCLUSIONS: TDR was associated with failure in the context of non-fully sensitive regimens. Efforts are needed to incorporate resistance testing into national treatment programs.
METHODS: Prospectively collected longitudinal data from patients in Thailand, Hong Kong, Malaysia, Japan, Taiwan, and South Korea were provided for analysis. Covariates included demographics, hepatitis B and C coinfections, baseline CD4 T lymphocyte count, and plasma HIV-1 RNA levels. Clinical deterioration (a new diagnosis of Centers for Disease Control and Prevention category B/AIDS-defining illness or death) was assessed by proportional hazards models. Surrogate endpoints were 12-month change in CD4 cell count and virologic suppression post therapy, evaluated by linear and logistic regression, respectively.
RESULTS: Of 1105 patients, 1036 (93.8%) infected with CRF01_AE or subtype B were eligible for inclusion in clinical deterioration analyses and contributed 1546.7 person-years of follow-up (median: 413 days, interquartile range: 169-672 days). Patients >40 years demonstrated smaller immunological increases (P = 0.002) and higher risk of clinical deterioration (hazard ratio = 2.17; P = 0.008). Patients with baseline CD4 cell counts >200 cells per microliter had lower risk of clinical deterioration (hazard ratio = 0.373; P = 0.003). A total of 532 patients (48.1% of eligible) had CD4 counts available at baseline and 12 months post therapy for inclusion in immunolgic analyses. Patients infected with subtype B had larger increases in CD4 counts at 12 months (P = 0.024). A total of 530 patients (48.0% of eligible) were included in virological analyses with no differences in response found between genotypes.
CONCLUSIONS: Results suggest that patients infected with CRF01_AE have reduced immunologic response to therapy at 12 months, compared with subtype B-infected counterparts. Clinical deterioration was associated with low baseline CD4 counts and older age. The lack of differences in virologic outcomes suggests that all patients have opportunities for virological suppression.
METHODS: HIV-infected adults enrolled in the TREAT Asia HIV Observational Database were eligible if they had an HIV RNA measurement documented at the time of ART initiation. The dataset was randomly split into a derivation data set (75% of patients) and a validation data set (25%). Factors associated with pre-treatment HIV RNA <100,000 copies/mL were evaluated by logistic regression adjusted for study site. A prediction model and prediction scores were created.
RESULTS: A total of 2592 patients were enrolled for the analysis. Median [interquartile range (IQR)] age was 35.8 (29.9-42.5) years; CD4 count was 147 (50-248) cells/mm3; and pre-treatment HIV RNA was 100,000 (34,045-301,075) copies/mL. Factors associated with pre-treatment HIV RNA <100,000 copies/mL were age <30 years [OR 1.40 vs. 41-50 years; 95% confidence interval (CI) 1.10-1.80, p = 0.01], body mass index >30 kg/m2(OR 2.4 vs. <18.5 kg/m2; 95% CI 1.1-5.1, p = 0.02), anemia (OR 1.70; 95% CI 1.40-2.10, p 350 cells/mm3(OR 3.9 vs. <100 cells/mm3; 95% CI 2.0-4.1, p 2000 cells/mm3(OR 1.7 vs. <1000 cells/mm3; 95% CI 1.3-2.3, p 25 yielded the sensitivity of 46.7%, specificity of 79.1%, positive predictive value of 67.7%, and negative predictive value of 61.2% for prediction of pre-treatment HIV RNA <100,000 copies/mL among derivation patients.
CONCLUSION: A model prediction for pre-treatment HIV RNA <100,000 copies/mL produced an area under the ROC curve of 0.70. A larger sample size for prediction model development as well as for model validation is warranted.
METHODS: Data from two regional cohort observational databases were analyzed for trends in median CD4 cell counts at ART initiation and the proportion of late ART initiation (CD4 cell counts <200 cells/mm(3) or prior AIDS diagnosis). Predictors for late ART initiation and mortality were determined.
RESULTS: A total of 2737 HIV-positive ART-naïve patients from 22 sites in 13 Asian countries and territories were eligible. The overall median (IQR) CD4 cell count at ART initiation was 150 (46-241) cells/mm(3). Median CD4 cell counts at ART initiation increased over time, from a low point of 115 cells/mm(3) in 2008 to a peak of 302 cells/mm(3) after 2011 (p for trend 0.002). The proportion of patients with late ART initiation significantly decreased over time from 79.1% before 2007 to 36.3% after 2011 (p for trend <0.001). Factors associated with late ART initiation were year of ART initiation (e.g. 2010 vs. before 2007; OR 0.40, 95% CI 0.27-0.59; p<0.001), sex (male vs. female; OR 1.51, 95% CI 1.18-1.93; p=0.001) and HIV exposure risk (heterosexual vs. homosexual; OR 1.66, 95% CI 1.24-2.23; p=0.001 and intravenous drug use vs. homosexual; OR 3.03, 95% CI 1.77-5.21; p<0.001). Factors associated with mortality after ART initiation were late ART initiation (HR 2.13, 95% CI 1.19-3.79; p=0.010), sex (male vs. female; HR 2.12, 95% CI 1.31-3.43; p=0.002), age (≥51 vs. ≤30 years; HR 3.91, 95% CI 2.18-7.04; p<0.001) and hepatitis C serostatus (positive vs. negative; HR 2.48, 95% CI 1.-4.36; p=0.035).
CONCLUSIONS: Median CD4 cell count at ART initiation among Asian patients significantly increases over time but the proportion of patients with late ART initiation is still significant. ART initiation at higher CD4 cell counts remains a challenge. Strategic interventions to increase earlier diagnosis of HIV infection and prompt more rapid linkage to ART must be implemented.
METHODS AND FINDINGS: We reviewed all GenBank submissions of HIV-1 reverse transcriptase sequences with or without protease and identified 287 studies published between March 1, 2000, and December 31, 2013, with more than 25 recently or chronically infected ARV-naïve individuals. These studies comprised 50,870 individuals from 111 countries. Each set of study sequences was analyzed for phylogenetic clustering and the presence of 93 surveillance drug-resistance mutations (SDRMs). The median overall TDR prevalence in sub-Saharan Africa (SSA), south/southeast Asia (SSEA), upper-income Asian countries, Latin America/Caribbean, Europe, and North America was 2.8%, 2.9%, 5.6%, 7.6%, 9.4%, and 11.5%, respectively. In SSA, there was a yearly 1.09-fold (95% CI: 1.05-1.14) increase in odds of TDR since national ARV scale-up attributable to an increase in non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance. The odds of NNRTI-associated TDR also increased in Latin America/Caribbean (odds ratio [OR] = 1.16; 95% CI: 1.06-1.25), North America (OR = 1.19; 95% CI: 1.12-1.26), Europe (OR = 1.07; 95% CI: 1.01-1.13), and upper-income Asian countries (OR = 1.33; 95% CI: 1.12-1.55). In SSEA, there was no significant change in the odds of TDR since national ARV scale-up (OR = 0.97; 95% CI: 0.92-1.02). An analysis limited to sequences with mixtures at less than 0.5% of their nucleotide positions—a proxy for recent infection—yielded trends comparable to those obtained using the complete dataset. Four NNRTI SDRMs—K101E, K103N, Y181C, and G190A—accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling.
CONCLUSIONS: Most TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance mutations were responsible for most cases of high-level resistance, suggesting that inexpensive point-mutation assays to detect these mutations may be useful for pre-therapy screening in regions with high levels of TDR. In the context of a public health approach to ARV therapy, a reliable point-of-care genotypic resistance test could identify which patients should receive standard first-line therapy and which should receive a protease-inhibitor-containing regimen.