Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Eaton BT, Broder CC, Wang LF
    Curr Mol Med, 2005 Dec;5(8):805-16.
    PMID: 16375714
    Within the past decade a number of new zoonotic paramyxoviruses emerged from flying foxes to cause serious disease outbreaks in man and livestock. Hendra virus was the cause of fatal infections of horses and man in Australia in 1994, 1999 and 2004. Nipah virus caused encephalitis in humans both in Malaysia in 1998/99, following silent spread of the virus in the pig population, and in Bangladesh from 2001 to 2004 probably as a result of direct bat to human transmission and spread within the human population. Hendra and Nipah viruses are highly pathogenic in humans with case fatality rates of 40% to 70%. Their genetic constitution, virulence and wide host range make them unique paramyxoviruses and they have been given Biosecurity Level 4 status in a new genus Henipavirus within the family Paramyxoviridae. Recent studies on the virulence, host range and cell tropisms of henipaviruses provide insights into the unique biological properties of these emerging human pathogens and suggest approaches for vaccine development and therapeutic countermeasures.
  2. Chua KB, Wang LF, Lam SK, Eaton BT
    Arch Virol, 2002 Jul;147(7):1323-48.
    PMID: 12111411
    A novel paramyxovirus in the genus Rubulavirus, named Tioman virus (TiV), was isolated in 1999 from a number of pooled urine samples of Island Flying Foxes (Pteropus hypomelanus) during the search for the reservoir host of Nipah virus. TiV is antigenically related to Menangle virus (MenV) that was isolated in Australia in 1997 during disease outbreak in pigs. Sequence analysis of the full length genome indicated that TiV is a novel member of the genus Rubulavirus within the subfamily Paramyxovirinae, family Paramyxoviridae. However, there are several features of TiV which make it unique among known paramyxoviruses and rubulaviruses in particular: (1) TiV, like MenV, uses the nucleotide G as a transcriptional initiation site, rather than the A residue used by all other known paramyxoviruses; (2) TiV uses C as the +1 residue for all intergenic regions, a feature not seen for rubulaviruses but common for all other members within the subfamily Paramyxovirinae; (3) Although the attachment protein of TiV has structural features that are conserved in other rubulaviruses, it manifests no overall sequence homology with members of the genus, lacks the sialic acid-binding motif N-R-K-S-C-S and has only two out of the six highly conserved residues known to be important for the catalytic activity of neuraminidase.
  3. Chan YP, Koh CL, Lam SK, Wang LF
    J Gen Virol, 2004 Jun;85(Pt 6):1675-1684.
    PMID: 15166452 DOI: 10.1099/vir.0.19752-0
    Hendra virus (HeV) and Nipah virus (NiV) are members of a new genus, Henipavirus, in the family paramyxoviridae. Each virus encodes a phosphoprotein (P) that is significantly larger than its counterparts in other known paramyxoviruses. The interaction of this unusually large P with its nucleocapsid protein (N) was investigated in this study by using recombinant full-length and truncated proteins expressed in bacteria and a modified protein-blotting protein-overlay assay. Results from our group demonstrated that the N and P of both viruses were able to form not only homologous, but also heterologous, N-P complexes, i.e. HeV N was able to interact with NiV P and vice versa. Deletion analysis of the N and P revealed that there were at least two independent N-binding sites on P and they resided at the N and C termini, respectively. Similarly, more than one P-binding site was present on N and one of these was mapped to a 29 amino acid (aa) C-terminal region, which on its own was sufficient to interact with the extreme C-terminal 165 aa region of P.
  4. Crameri G, Wang LF, Morrissy C, White J, Eaton BT
    J Virol Methods, 2002 Jan;99(1-2):41-51.
    PMID: 11684302
    Rapid immune plaque assays have been developed to quantify biohazard level 4 agents Hendra and Nipah viruses and detect neutralising antibodies to both viruses. The methods rely on the fact that both viruses rapidly generate large syncytia in monolayers of Vero cells within 24 h and that monospecific antiserum to the Hendra virus phosphoprotein (P) detects that protein in both Hendra and Nipah virus-induced syncytia after methanol fixation of virus-infected cells. The P protein is a constituent of the ribonucleoprotein core of the viruses and a component of the viral RNA-dependent RNA polymerase and is made in significant amounts in infected cells. In the immune plaque assay, anti-P antibody is localised by an alkaline phosphatase-linked second antibody and the Western blot substrates 5-bromo-4-chloro-3-indolyl phosphate and p-nitro blue tetrazolium. A modification of the rapid immune plaque assay was also used to detect antibodies to Nipah virus in a panel of porcine field sera from Malaysia and the results showed good agreement between the immune plaque assay and a traditional serum neutralisation test. After methanol fixation, plates can be stored for up to 7 months and may be used in the immune plaque assay to complement the enzyme-linked immunosorbent assay screening of sera for antibodies to Nipah virus. At present, all enzyme-linked immunosorbent assay positive sera are subject to confirmatory serum neutralisation tests. Use of the immune plaque assay may reduce the number of sera requiring confirmatory neutralisation testing for Nipah virus antibodies under biohazard level 4 conditions by identifying those that generate false positive in the enzyme-linked immunosorbent assay.
  5. Eaton BT, Broder CC, Middleton D, Wang LF
    Nat Rev Microbiol, 2006 Jan;4(1):23-35.
    PMID: 16357858
    Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.
  6. Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA
    PLoS Negl Trop Dis, 2016 06;10(6):e0004775.
    PMID: 27341030 DOI: 10.1371/journal.pntd.0004775
    Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.
  7. Dups J, Middleton D, Long F, Arkinstall R, Marsh GA, Wang LF
    Virol J, 2014;11:102.
    PMID: 24890603 DOI: 10.1186/1743-422X-11-102
    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis.
  8. Voon K, Ng QM, Yu M, Wang LF, Chua KB
    PMID: 23077814
    Viruses in the family Picornaviridae are classified into nine genera. Within the family Picornaviridae, two species: Encephalomyocarditis virus and Theilovirus, are listed under the genus Cardiovirus. A novel Theilovirus, Saffold virus (SAFV), was first reported in 2007. Since then, numerous SAFV isolates have been detected around the world and genetic recombinations have been reported among them. In 2009, SAFV-Penang was isolated from a febrile child with influenza-like illness in Malaysia. SAFV-Penang is a genotype 3 SAFV. In this study we investigated the genome features of SAFV-Penang to exclude the possibility it is a recombinant variant. SAFV-Penang was found not to be a recombinant variant but to have three unique non-synonymous substitutions, alanine [A689], lysine [K708] and isoleucine [I724] in the VP1 protein.
  9. Chua KB, Voon K, Yu M, Keniscope C, Abdul Rasid K, Wang LF
    PLoS One, 2011;6(10):e25434.
    PMID: 22022394 DOI: 10.1371/journal.pone.0025434
    Bats are increasingly being recognized as important reservoir hosts for a large number of viruses, some of them can be highly virulent when they infect human and livestock animals. Among the new bat zoonotic viruses discovered in recent years, several reoviruses (respiratory enteric orphan viruses) were found to be able to cause acute respiratory infections in humans, which included Melaka and Kampar viruses discovered in Malaysia, all of them belong to the genus Orthoreovirus, family Reoviridae. In this report, we describe the isolation of a highly related virus from an adult patient who suffered acute respiratory illness in Malaysia. Although there was no direct evidence of bat origin, epidemiological study indicated the potential exposure of the patient to bats before the onset of disease. The current study further demonstrates that spillover events of different strains of related orthoreoviruses from bats to humans are occurring on a regular basis, which calls for more intensive and systematic surveillances to fully assess the true public health impact of these newly discovered bat-borne zoonotic reoviruses.
  10. Voon K, Chua KB, Yu M, Crameri G, Barr JA, Malik Y, et al.
    J Gen Virol, 2011 Dec;92(Pt 12):2930-2936.
    PMID: 21849518 DOI: 10.1099/vir.0.033498-0
    We previously described three new Malaysian orthoreoviruses designated Pulau virus, Melaka virus and Kampar virus. Melaka and Kampar viruses were shown to cause respiratory disease in humans. These viruses, together with Nelson Bay virus, isolated from Australian bats, are tentatively classified as different strains within the species Pteropine orthoreovirus (PRV), formerly known as Nelson Bay orthoreovirus, based on the small (S) genome segments. Here we report the sequences of the large (L) and medium (M) segments, thus completing the whole-genome characterization of the four PRVs. All L and M segments were highly conserved in size and sequence. Conserved functional motifs previously identified in other orthoreovirus gene products were also found in the deduced proteins encoded by the cognate segments of these viruses. Detailed sequence analysis identified two genetic lineages divided into the Australian and Malaysian PRVs, and potential genetic reassortment among the M and S segments of the three Malaysian viruses.
  11. Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF, et al.
    Neuropathol. Appl. Neurobiol., 2009 Jun;35(3):296-305.
    PMID: 19473296 DOI: 10.1111/j.1365-2990.2008.00991.x
    To study the pathology of two cases of human Hendra virus infection, one with no clinical encephalitis and one with relapsing encephalitis.
  12. Pritchard LI, Chua KB, Cummins D, Hyatt A, Crameri G, Eaton BT, et al.
    Arch Virol, 2006 Feb;151(2):229-39.
    PMID: 16205863
    After the outbreak of Nipah virus (NiV) in 1998-99, which resulted in 105 human deaths and the culling of more than one million pigs, a search was initiated for the natural host reservoir of NiV on Tioman Island off the east coast of Malaysia. Three different syncytia-forming viruses were isolated from fruit bats on the island. They were Nipah virus, Tioman virus (a novel paramyxovirus related to Menangle virus), and a reovirus, named Pulau virus (PuV), which is the subject of this study. PuV displayed the typical ultra structural morphology of a reovirus and was neutralised by serum against Nelson Bay reovirus (NBV), a reovirus isolated from a fruit bat (Pteropus poliocephalus) in Australia over 30 years ago. PuV was fusogenic and formed large syncytia in Vero cells. Comparison of dsRNA segments between PuV and NBV showed distinct mobility differences for the S1 and S2 segments. Complete sequence analysis of all four S segments revealed a close relationship between PuV and NBV, with nucleotide sequence identity varying from 88% for S3 segment to 56% for the S1 segment. Similarly phylogenetic analysis of deduced protein sequences confirmed that PuV is closely related to NBV. In this paper we discuss the similarities and differences between PuV and NBV which support the classification of PuV as a novel mammalian, fusogenic reovirus within the Nelson Bay orthoreovirus species, in the genus Orthoreovirus, family Reoviridae.
  13. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al.
    Virology, 2001 May 10;283(2):215-29.
    PMID: 11336547
    A search for the natural host of Nipah virus has led to the isolation of a previously unknown member of the family Paramyxoviridae. Tioman virus (TiV) was isolated from the urine of fruit bats (Pteropus hypomelanus) found on the island of the same name off the eastern coast of peninsular Malaysia. An electron microscopic study of TiV-infected cells revealed spherical and pleomorphic-enveloped viral particles (100--500 nm in size) with a single fringe of embedded peplomers. Virus morphogenesis occurred at the plasma membrane of infected cells and morphological features of negative-stained ribonucleoprotein complexes were compatible with that of viruses in the family Paramyxoviridae. Serological studies revealed no cross-reactivity with antibodies against a number of known Paramyxoviridae members except for the newly described Menangle virus (MenV), isolated in Australia in 1997. Failure of PCR amplification using MenV-specific primers suggested that this new virus is related to but different from MenV. For molecular characterization of the virus, a cDNA subtraction strategy was employed to isolate virus-specific cDNA from virus-infected cells. Complete gene sequences for the nucleocapsid protein (N) and phosphoprotein (P/V) have been determined and recombinant N and V proteins produced in baculovirus. The recombinant N and V proteins reacted with porcine anti-MenV sera in Western blot, confirming the serological cross-reactivity observed during initial virus characterization. The lack of a C protein-coding region in the P/V gene, the creation of P mRNA by insertion of 2-G residues, and the results of phylogenetic analyses all indicated that TiV is a novel member of the genus Rubulavirus.
  14. Tang SS, Tan WS, Devi S, Wang LF, Pang T, Thong KL
    Clin Diagn Lab Immunol, 2003 Nov;10(6):1078-84.
    PMID: 14607870
    The capsular polysaccharide Vi antigen (ViCPS) is an essential virulence factor and also a protective antigen of Salmonella enterica serovar Typhi. A random 12-mer phage-displayed peptide library was used to identify mimotopes (epitope analogues) of this antigen by panning against a ViCPS-specific monoclonal antibody (MAb) ATVi. Approximately 75% of the phage clones selected in the fourth round carried the peptide sequence TSHHDSHGLHRV, and the rest of the clones harbored ENHSPVNIAHKL and other related sequences. These two sequences were also obtained in a similar panning process by using pooled sera from patients with a confirmed diagnosis of typhoid fever, suggesting they mimic immunodominant epitopes of ViCPS antigens. Binding of MAb ATVi to the mimotopes was specifically blocked by ViCPS, indicating that they interact with the same binding site (paratope) of the MAb. Data and reagents generated in this study have important implications for the development of peptide-base diagnostic tests and peptide vaccines and may also provide a better understanding of the pathogenesis of typhoid fever.
  15. Tan CW, Wittwer K, Lim XF, Uehara A, Mani S, Wang LF, et al.
    Emerg Microbes Infect, 2019;8(1):787-795.
    PMID: 31132935 DOI: 10.1080/22221751.2019.1621668
    Pteropine orthoreoviruses (PRV) are emerging bat-borne viruses with proven zoonotic transmission. We recently demonstrated human exposure to PRV in Singapore, which together with previous reports from Malaysia and Vietnam suggest that human infection of PRV may occur periodically in the region. This raises the question whether bats are the only sources of human infection. In this study, we screened 517 cynomolgus macaques caught in Singapore for evidence of exposure to PRV3M (also known as Melaka virus), which was first isolated from human patients in Melaka, Malaysia. We found that 67 serum samples were PRV3M positive by ELISA and 34 were also positive by virus neutralization assay. To investigate whether monkeys could act as hosts for PRV transmission, we experimentally infected cynomolgus macaques with PRV3M and housed these animals with uninfected monkeys. Although no clinical signs of infection were observed in infected animals, viral RNA was detected in nasal and rectal swabs and all infected macaques seroconverted. Additionally, one of the uninfected animals seroconverted, implying active shedding and transmission of PRV3M. We provide evidence that PRV exposure in the macaque population in Singapore occurs at a relatively high prevalence and this study suggests that cynomolgus macaques may be an intermediate or reservoir host for PRVs.
  16. Chua KB, Voon K, Yu M, Ali WN, Kasri AR, Wang LF
    Emerg Infect Dis, 2011 Aug;17(8):1562-4.
    PMID: 21801653 DOI: 10.3201/eid1708.101380
  17. Naidu BR, Ngeow YF, Wang LF, Chan L, Yao ZJ, Pang T
    Immunol Lett, 1998 Jun;62(2):111-5.
    PMID: 9698107
    Random 15-mer peptides displayed on filamentous phages were screened in binding studies using a Chlamydia pneumoniae-specific monoclonal antibody (RR-402) and affinity-purified, polyclonal sera from patients seropositive for C. pneumoniae infections by the microimmunofluorescence (MIF) test. One 15-mer epitope, epitope Cpnl5A (LASLCNPKPSDAPVT) was identified in both the monoclonal and polyclonal screenings, and showed higher ELISA reactivity with C. pneumoniae MIF-positive sera compared to patients with other chlamydial infections, non-chlamydial respiratory infections and normal healthy sera (MIF-negative). Interestingly, epitope Cpnl5A also showed significant (52%) amino acid sequence homology to the 56 kDa type-specific antigen of Rickettsia tsutsugamushi, a protein implicated in the virulence of this organism.
  18. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.
    Antiviral Res, 2013 Oct;100(1):8-13.
    PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012
    Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
  19. Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, et al.
    PLoS One, 2011;6(9):e25256.
    PMID: 21966471 DOI: 10.1371/journal.pone.0025256
    Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), have Pteropid bats as their known natural reservoirs. Antibodies against henipaviruses have been found in Eidolon helvum, an old world fruit bat species, and henipavirus-like nucleic acid has been detected in faecal samples from E. helvum in Ghana. The initial outbreak of NiV in Malaysia led to over 265 human encephalitis cases, including 105 deaths, with infected pigs acting as amplifier hosts for NiV during the outbreak. We detected non-neutralizing antibodies against viruses of the genus Henipavirus in approximately 5% of pig sera (N = 97) tested in Ghana, but not in a small sample of other domestic species sampled under a E. helvum roost. Although we did not detect neutralizing antibody, our results suggest prior exposure of the Ghana pig population to henipavirus(es). Because a wide diversity of henipavirus-like nucleic acid sequences have been found in Ghanaian E. helvum, we hypothesise that these pigs might have been infected by henipavirus(es) sufficiently divergent enough from HeVor NiV to produce cross-reactive, but not cross-neutralizing antibodies to HeV or NiV.
  20. Yaiw KC, Hyatt A, Vandriel R, Crameri SG, Eaton B, Wong MH, et al.
    Arch Virol, 2008;153(5):865-75.
    PMID: 18330496 DOI: 10.1007/s00705-008-0059-0
    Tioman virus (TioPV) and Menangle virus (MenPV) are two antigenically and genetically related paramyxoviruses (genus: Rubulavirus, family: Paramyxoviridae) isolated from Peninsular Malaysia (2001) and Australia (1997), respectively. Both viruses are potential zoonotic agents. In the present study, the infectivity, growth kinetics, morphology and morphogenesis of these two paramyxoviruses in a human neuronal cell (SK-N-SH) line were investigated. Sub-confluent SK-N-SH cells were infected with TioPV and MenPV at similar multiplicity of infection. These cells were examined by conventional and immunoelectron microscopy, and virus titres in the supernatants were assayed. Syncytia were observed for both infections in SK-N-SH cells and were more pronounced during the early stages of TioPV infection. The TioPV titre increased consistently (10(1)) every 12 h after infection. In MenPV-infected cells, cellular material was frequently observed within budding virions, and microfilaments and microtubules were abundant. Viral budding was common, and extracellular MenPVs tended to be more pleomorphic compared to TioPVs, which appeared to be more spherical in appearance. The MenPV cytoplasmic viral inclusion appeared to be comparatively smaller, loose and interspersed with randomly scattered circle-like particles, whereas huge tubule-like cytoplasmic inclusions were observed in TioPV-infected cells. Both viruses also displayed different cellular pathology in the SK-N-SH cells. The intracellular ultrastructural characteristics of these two viruses in infected neuronal cells may allow them to be differentiated by electron microscopy.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links