Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Lakhwani MN, Dadlani NI, Wong YC
    ANZ J Surg, 2009 May;79(5):352-7.
    PMID: 19566516 DOI: 10.1111/j.1445-2197.2009.04888.x
    Chronic venous disorders are conditions of increasing prevalence in the developing world, and venous ulceration is the terminal sequel. Currently there are only limited data on all aspects of this from Southeast Asia. The aim of the present study was to assess differences in the demography and outcome between varicose vein surgery (VVS) and the relatively new endovenous laser therapy (EVT) in patients from Penang, Malaysia.
  2. Wong YC, Mohan M, Pau A
    J Indian Soc Pedod Prev Dent, 2016 Oct-Dec;34(4):348-53.
    PMID: 27681398 DOI: 10.4103/0970-4388.191415
    CONTEXT: To investigate the antibiotic prescribing training received by dental students, clinical experience in treating child patients, awareness of antibiotic prescribing guidelines, preparedness in antibiotic prescribing, and compliance with antibiotic prescribing guidelines for the management of dental infections in children.
    METHODS: This was a cross-sectional study involving final year dental students from Malaysian and Asian dental schools. A self-administered questionnaire consisting of five clinical case scenarios was e-mailed to all final year students at selected dental schools. Students' responses were compared for each clinical case scenario with the prescribing guidelines of the American Academy of Pediatric Dentistry and the American Dental Association. Compliance in each scenario was tested for association with their preparedness in antibiotic prescribing, previous training on antibiotic prescribing and awareness of antibiotic prescribing guidelines using Chi-square test. Data collected were analyzed using SPSS statistics version 20.
    RESULTS: A total of 108 completed responses were received. About 74 (69%) students were from Malaysian dental schools. The compliance rate with prescribing guidelines ranged from 15.7% to 43.5%. Those attending Malaysian dental schools (47.3%) and those who had treated child patient more often (46.3%) were more likely (P < 0.05) to be aware of the guidelines. Those who had received antibiotic prescribing training (21.3%) were more likely to think they were well prepared in antibiotic prescribing (P < 0.05).
    CONCLUSIONS: Final year dental students had low awareness and compliance with antibiotic prescribing guidelines. Further research is needed to investigate how compliance with the guidelines may be enhanced.
  3. Wong YC, Mahyuddin N, Aminuddin AMR
    Waste Manag, 2020 Dec;118:402-415.
    PMID: 32947219 DOI: 10.1016/j.wasman.2020.08.036
    Recycling automotive waste has increasingly become an alternative solution towards producing sustainable materials given the rising issue of raw material shortages and waste management challenges at global level. The improper end-of-life vehicle (ELV) waste management poses detrimental impacts on the environment. This paper proposes a novel method to develop thermal insulation sandwich panels using ELV waste, motivated by the critical needs of creating high-performance thermal insulation for buildings. Six sandwich panels (P1-P6) of different weight and ratio of shredded ELV particles were manufactured. The sandwich panels structure was made of three layers: a core, and a glass face sheet bonded to each side. The core structure composed of Polycarbonate (PC) from headlamp lenses and polyurethane (PU) from seat, bonded using resin casting approach. Thermal conductivity of the samples was measured using guarded hot-plate apparatus. Results corroborated that thermal conductivity of ELV-based sandwich panels reduced remarkably compared to panel without ELVs, recorded at 15.51% reduction. Composition gives the best thermal performance was made of mixed ELV core materials of ratio 50%PC:50%PU, it has a thermal conductivity value of 0.1776 W/mK. The transparency data were obtained using Haze-gard plus haze meter. The best luminous transmittance value was exhibited by P2 (100% PC), 67.47%. The best clarity value and haze value were shown by P6 (25% PC: 75% PU), 55.13% and 52.6% respectively. ELV waste can be recycled to develop useful sustainable thermal insulation to improve thermal and optical transparency performance of buildings as a substitute for conventional materials which have a relevance for future façade concepts.
  4. Wong YC, Osahor A, Al-Ajli FOM, Narayanan K
    Anal Biochem, 2021 10 01;630:114324.
    PMID: 34363787 DOI: 10.1016/j.ab.2021.114324
    The effect of DNA topology on transfection efficiency of mammalian cells has been widely tested on plasmids smaller than 10 kb, but little is known for larger DNA vectors carrying intact genomic DNA containing introns, exons, and regulatory regions. Here, we demonstrate that circular BACs transfect more efficiently than covalently closed linear BACs. We found up to 3.1- and 8.9- fold higher eGFP expression from circular 11 kb and 100 kb BACs, respectively, compared to linear BACs. These findings provide insights for improved vector development for gene delivery and expression studies of large intact transgenes in mammalian cells.
  5. Wong YC, Ng AWR, Osahor A, Narayanan K
    Anal Biochem, 2024 Oct;693:115596.
    PMID: 38936495 DOI: 10.1016/j.ab.2024.115596
    DNA markers are used as a size reference and sample loading control during gel electrophoresis. Most markers are designed for conventional gel electrophoresis to separate DNA smaller than 20 kb. For larger molecules, pulsed-field gel electrophoresis (PFGE) marker is required. Limited PFGE markers are available because large DNA are prone to nicking and degradation, causing smeary bands. Here, we developed a robust marker based on bacterial artificial chromosomes (BACs) with bands up to 184 kb. This marker could consistently confer intense and distinct bands for accurate gel analysis in molecular biology studies, laboratory validations or clinical diagnosis.
  6. Rohani A, Wong YC, Zamre I, Lee HL, Zurainee MN
    PMID: 19842378
    Dengue 2 and 4 viruses obtained from dengue-infected patients were maintained in a C6/36 Aedes albopictus Skuse cell line and used to infect adult female Aedes aegypti mosquitoes. Each serotype was mixed separately with fresh human erythrocytes and fed to adult female mosquitoes using an artificial membrane feeding technique. Fully engorged mosquitoes were selected and retained at 26 degrees C, 28 degrees C and 30 degrees C to observe dengue virus development in Aedes vectors. Virus detection was carried out by reverse-transcriptase polymerase chain reaction (RT-PCR). The virus was first detected on Day 9 at 26 degrees C and 28 degrees C and on Day 5 at 30 degrees C for both dengue 2 and 4. The study shows the incubation period of the viruses decreased when the extrinsic incubation temperature increases.
  7. Seak CJ, Ng CJ, Yen DH, Wong YC, Hsu KH, Seak JC, et al.
    Am J Emerg Med, 2014 Dec;32(12):1481-4.
    PMID: 25308825 DOI: 10.1016/j.ajem.2014.09.011
    This study aims to evaluate the performance of Simplified Acute Physiology Score II (SAPS II), the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and the Sequential Organ Failure Assessment (SOFA) score for predicting illness severity and the mortality of adult hepatic portal venous gas (HPVG) patients presenting to the emergency department (ED). This will assist emergency physicians in risk stratification.
  8. Seak CJ, Hsu KH, Wong YC, Ng CJ, Yen DH, Seak JC, et al.
    Am J Emerg Med, 2014 Sep;32(9):972-5.
    PMID: 25043627 DOI: 10.1016/j.ajem.2014.05.016
    This study aimed to investigate the prognostic factors of adult patients with hepatic portal venous gas (HPVG) in the emergency department (ED) to facilitate clinical decision making by emergency physicians.
  9. Wong YC, George E, Tan KL, Yap SF, Chan LL, Tan JA
    Malays J Pathol, 2006 Jun;28(1):17-21.
    PMID: 17694955
    The molecular basis of variable phenotypes in P-thalassaemia patients with identical genotypes has been associated with co-inheritance of alpha-thalassaemia and persistence of HbF production in adult life. The Xmn I restriction site at -158 position of the Ggamma-gene is associated with increased expression of the Ggamma-globin gene and higher production of HbF This study aims to determine the frequency of the digammaferent genotypes of the Ggamma Xmn I polymorphism in P-thalassaemia patients in two ethnic groups in Malaysia. Molecular characterisation and frequency of the Ggamma Xmn I polymorphism were studied in fifty-eight Chinese and forty-nine beta-thalassaemia Malay patients by Xmn I digestion after DNA amplification of a 650 bp sequence. The in-house developed technique did not require further purification or concentration of amplified DNA before restriction enzyme digestion. The cheaper Seakem LE agarose was used instead of Nusieve agarose and distinct well separated bands were observed. Genotyping showed that the most frequent genotype observed in the Malaysian Chinese was homozygosity for the absence of the Xmn I site (-/-) (89.7%). In the Malays, heterozygosity of the Xmn I site (+/-) was most common (63.3%). Homozygosity for the Xmn I site (+/+) was absent in the Chinese, but was confirmed in 8.2% of the Malays. The ratio of the (+) allele (presence of the Xmn I site) to the (-) allele (absence of the Xmn I site)) was higher in the Malays (0.66) compared to the Chinese (0.05). The (+/-) and (+/+) genotypes are more commonly observed in the Malays than the Chinese in Malaysia.
  10. Tan JAMA, Yap SF, Tan KL, Wong YC, Wee YC, Kok JL
    Acta Haematol., 2003;109(4):169-75.
    PMID: 12853688 DOI: 10.1159/000070965
    Molecular characterization of the compound heterozygous condition - (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia - in four families showing mild beta-thalassemia intermedia was carried out using DNA amplification techniques. Using the Amplification Refractory Mutation System (ARMS) to confirm the beta-mutations and DNA amplification to detect the 100-kb Chinese-specific (G)gamma((A)gammadeltabeta)(o)-deletion, ()two families were confirmed to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia with the IVSII No. 654 beta(+)-allele. In the third family, the (G)gamma((A)gammadeltabeta)(o)-deletion was confirmed in the father and the mother was a beta-thalassemia carrier with the cd 41-42 beta(o)-allele. Their affected child with (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia was found to be transfusion dependent. The same (G)gamma((A)gammadeltabeta)(o)-deletion and beta-thalassemia (cd 41-42) was also confirmed in a fourth family. In addition, the mother was also diagnosed with Hb H disease (genotype -alpha(3.7)/-(SEA)). Both the children were found to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia but they were not transfusion dependent and this could be due to co-inheritance of alpha-thalassemia-2 (genotype-alpha(3.7)/alphaalpha) in the children together with their compound heterozygous condition.
  11. Tan KL, Tan JA, Wong YC, Wee YC, Thong MK, Yap SF
    Genet. Test., 2001;5(1):17-22.
    PMID: 11336396 DOI: 10.1089/109065701750168626
    Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.
  12. Liew PS, Tan TH, Wong YC, Sim EUH, Lee CW, Narayanan K
    ACS Synth Biol, 2020 04 17;9(4):804-813.
    PMID: 32196315 DOI: 10.1021/acssynbio.9b00478
    TelN and tos are a unique DNA linearization unit isolated from bacteriophage N15. While being transferable, the TelN cleaving-rejoining activities remained stable to function on tos in both bacterial and mammalian environments. However, TelN contribution in linear plasmid replication in mammalian cells remains unknown. Herein, we investigated the association of TelN in linear tos-containing DNA (tos-DNA) replication in mammalian cells. Additionally, the mammalian origin of replication (ori) that is well-known to initiate the replication event of plasmid vectors was also studied. In doing so, we identified that both TelN and mammalian initiation sites were essential for the replication of linear tos-DNA, determined by using methylation sensitive DpnI/MboI digestion and polymerase chain reaction (PCR) amplification approaches. Furthermore, we engineered the linear tos-DNA to be able to retain in mammalian cells using S/MAR technology. The resulting S/MAR containing tos-DNA was robust for at least 15 days, with (1) continuous tos-DNA replication, (2) correct splicing of gene transcripts, and (3) stable exogenous gene expression that was statistically comparable to the endogenous gene expression level. Understanding the activities of TelN and tos in mammalian cells can potentially provide insights for adapting this simple DNA linearization unit in developing novel genetic engineering tools, especially to the eukaryotic telomere/telomerase study.
  13. Tan JA, Chin PS, Wong YC, Tan KL, Chan LL, George E
    Pathology, 2006 Oct;38(5):437-41.
    PMID: 17008283
    In Malaysia, about 4.5% of the Malay and Chinese populations are heterozygous carriers of beta-thalassaemia. The initial identification of rare beta-globin gene mutations by genomic sequencing will allow the development of simpler and cost-effective PCR-based techniques to complement the existing amplification refractory mutation system (ARMS) and gap-PCR used for the identification of beta-thalassaemia mutations.
  14. Kwong QB, Wong YC, Lee PL, Sahaini MS, Kon YT, Kulaveerasingam H, et al.
    Sci Rep, 2021 07 26;11(1):15210.
    PMID: 34312480 DOI: 10.1038/s41598-021-94705-4
    Stomatal density is an important trait for breeding selection of drought tolerant oil palms; however, its measurement is extremely tedious. To accelerate this process, we developed an automated system. Leaf samples from 128 palms ranging from nursery (1 years old), juvenile (2-3 years old) and mature (> 10 years old) were collected to build an oil palm specific stomata detection model. Micrographs were split into tiles, then used to train a stomata object detection convolutional neural network model through transfer learning. The detection model was then tested on leaf samples acquired from three independent oil palm populations of young seedlings (A), juveniles (B) and productive adults (C). The detection accuracy, measured in precision and recall, was 98.00% and 99.50% for set A, 99.70% and 97.65% for set B, and 99.55% and 99.62% for set C, respectively. The detection model was cross-applied to another set of adult palms using stomata images taken with a different microscope and under different conditions (D), resulting in precision and recall accuracy of 99.72% and 96.88%, respectively. This indicates that the model built generalized well, in addition has high transferability. With the completion of this detection model, stomatal density measurement can be accelerated. This in turn will accelerate the breeding selection for drought tolerance.
  15. Wong YC, Abd El Ghany M, Naeem R, Lee KW, Tan YC, Pain A, et al.
    Front Microbiol, 2016;7:1288.
    PMID: 27597847 DOI: 10.3389/fmicb.2016.01288
    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.
  16. Wong YC, Naeem R, Abd El Ghany M, Hoh CC, Pain A, Nathan S
    Front Cell Infect Microbiol, 2022;12:1062682.
    PMID: 36619746 DOI: 10.3389/fcimb.2022.1062682
    INTRODUCTION: Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined.

    METHODS: We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen.

    RESULTS: Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice.

    DISCUSSION: The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.

  17. Wong YC, Ng AWR, Chen Q, Liew PS, Lee CW, Sim EUH, et al.
    ACS Synth Biol, 2023 Apr 21;12(4):909-921.
    PMID: 37026178 DOI: 10.1021/acssynbio.2c00580
    Bacteriophage N15 is the first virus known to deliver linear prophage into Escherichia coli. During its lysogenic cycle, N15 protelomerase (TelN) resolves its telomerase occupancy site (tos) into hairpin telomeres. This protects the N15 prophage from bacterial exonuclease degradation, enabling it to stably replicate as a linear plasmid in E. coli. Interestingly, purely proteinaceous TelN can retain phage DNA linearization and hairpin formation without involving host- or phage-derived intermediates or cofactors in the heterologous environment. This unique feature has led to the advent of synthetic linear DNA vector systems derived from the TelN-tos module for the genetic engineering of bacterial and mammalian cells. This review will focus on the development and advantages of N15-based novel cloning and expression vectors in the bacterial and mammalian environments. To date, N15 is the most widely exploited molecular tool for the development of linear vector systems, especially the production of therapeutically useful miniDNA vectors without a bacterial backbone. Compared to typical circular plasmids, linear N15-based plasmids display remarkable cloning fidelity in propagating unstable repetitive DNA sequences and large genomic fragments. Additionally, TelN-linearized vectors with the relevant origin of replication can replicate extrachromosomally and retain transgenes functionality in bacterial and mammalian cells without compromising host cell viability. Currently, this DNA linearization system has shown robust results in the development of gene delivery vehicles, DNA vaccines and engineering mammalian cells against infectious diseases or cancers, highlighting its multifaceted importance in genetic studies and gene medicine.
  18. Chan YF, Tan KL, Wong YC, Wee YC, Yap SF, Tan JAMA
    PMID: 12041567
    Molecular characterization and prenatal diagnosis for beta-thalassemia can be carried out using the Amplification Refractory Mutation System (ARMS). The ARMS is a rapid and direct molecular technique in which beta-thalassemia mutations are visualized immediately after DNA amplification by gel electrophoresis. In the University of Malaya Medical Center, molecular characterization and prenatal diagnosis for beta-thalassemia is carried out using ARMS for about 96% of the Chinese and 84.6% of the Malay patients. The remaining 4% and 15.4% of the uncharacterized mutations in the Chinese and Malay patients respectively are detected using DNA sequencing. DNA sequencing is an accurate technique but it is more time-consuming and expensive compared with the ARMS. The ARMS for the rare Chinese beta-mutations at position -29 (A-->G) and the ATG-->AGG base substitution at the initiator codon for translation in the beta-gene was developed. In the Malays, ARMS was optimized for the beta-mutations at codon 8/9 (+G), Cap (+1) (A-->C) and the AATAAA-->AATAGA base substitution in the polyadenylation region of the beta-gene. The ARMS protocols were developed by optimization of the parameters for DNA amplification to ensure sensitivity, specificity and reproducibility. ARMS primers (sequences and concentration), magnesium chloride concentration, Taq DNA polymerase and PCR cycling parameters were optimized for the specific amplification of each rare beta-thalassemia mutation. The newly-developed ARMS for the 5 rare beta-thalassemia mutations in the Chinese and Malays in Malaysia will allow for more rapid and cost-effective molecular characterization and prenatal diagnosis for beta-thalassemia in Malaysia.
  19. Wong YC, Abd El Ghany M, Ghazzali RNM, Yap SJ, Hoh CC, Pain A, et al.
    Front Microbiol, 2018;9:1118.
    PMID: 29896180 DOI: 10.3389/fmicb.2018.01118
    A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links