Displaying all 12 publications

Abstract:
Sort:
  1. Kayode JS, Yusup Y
    Data Brief, 2018 Aug;19:798-803.
    PMID: 29900375 DOI: 10.1016/j.dib.2018.05.090
    A secondary dataset was generated from the Euldph-λ semi-automatic Algorithm, (ESA) developed to automatically computes various depths to the magnetic anomalies using a primary data set from gridded aeromagnetic data obtained in the study area. Euler Deconvolution techniques, (EDT), was adopted in the identification and definition of the magnetic anomaly source rocks in the study area. The aim is to use the straightforward technique to pinpoint magnetic anomalies at a depth which substantiate mineralization potential of the area. The ESA was integrated with the imaging function of Oasis Montaj 2014 source parameter from Geosoft® Inc. From the data, it could be summarized that similar tectonic processes during the deformation and metamorphic activities, the subsurface structures of the study area produce corresponding trending form.
  2. Ummi-Shafiqah, M.S., Fazilah, A., Karim, A.A., Kaur, B., Yusup, Y.
    MyJurnal
    Starch blend films made from sago and mung bean were prepared by casting with glycerol as the plasticizer and subsequently exposed to ultraviolet (UV) irradiation for 2 h. The films were characterized by thickness, moisture sorption isotherms, X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. All films produced were colorless while incorporation of glycerol resulted in more flexible and manageable films. Moisture sorption isotherms for all films showed sigmoidal shape and the control films showed slightly higher curve than treated films. While for X-ray analysis, the control and treated films for all formulations showed similar pattern, however for treated films showed more crystalline character. UV radiation showed affect on X-ray diffraction and sorption isotherms; however the UV radiation did not affect the spectra pattern of FTIR.
  3. Yusup Y, Kayode JS, Alkarkhi AFM
    MethodsX, 2018;5:448-453.
    PMID: 30090703 DOI: 10.1016/j.mex.2018.05.003
    The southern South China coastal oceans within the South East Asian region are much lacking in the perception of the surface energy budget and evaporation over the ocean waters in response to climatic changes. The eddy covariance method was used to measure the energy fluxes, microclimate variables, and surface water temperature from November 2015 to October 2017 at the Straits of Malacca, South China Sea; Pulau Pinang, Malaysia, situated at latitude 5°28'06″N, and longitude 100°12'01″E. This work focused on the methodological approach to the air-sea energy fluxes data collection and analysis. In this regard, the method applied for the direct measurements and analysis of energy fluxes and other meteorological parameters in the site is considered and reported. •The paper summarizes the analysis of energy fluxes, microclimate variables, and surface water temperature data in a tropical coastal ocean station using the eddy covariance method.•The methodological approach illustrates the method of analysis applied in this study which can be compared and used for similar studies in other places.•The reproducible data analysis technique matches similar comparative methods such as Matlab and Python.
  4. Yusup Y, Kayode JS, Alkarkhi AFM
    Data Brief, 2018 Aug;19:1477-1481.
    PMID: 30229020 DOI: 10.1016/j.dib.2018.06.020
    Air-sea flux exchanges influence the climate condition and the global carbon-moisture cycle. It is imperative to understand the fundamentals of the natural systems at the tropical coastal ocean and how the transformation takes place over the time. Hence, latent and sensible heat fluxes, microclimate variables, and surface water temperature data were collected using eddy covariance instruments mounted on a platform at a tropical coastal ocean station from November 2015 to October 2017. The research data is to gain the needful knowledge of the energy exchanges in the tropical climatic environment to further improve predictive algorithms or models. Therefore, it is intended that this data report will offer appropriate information for the Monsoonal, and diurnal patterns of latent (LE) and sensible (H) heats and hence, establish the relationship between microclimate variables on the energy fluxes at the peninsular Malaysian tropical coastal ocean.
  5. Yusup Y, Kayode JS, Alkarkhi AFM
    Data Brief, 2018 Dec;21:13-17.
    PMID: 30310834 DOI: 10.1016/j.dib.2018.09.108
    Data on the micrometeorological parameters and Energy Fluxes at an intertidal zone of a Tropical Coastal Ocean was carried out on an installed eddy covariance instruments at a Muka head station in the north-western end of the Pinang Island (5°28'06''N, 100°12'01''E), Peninsula Malaysia. The vast source of the supply of energy and heat to the hydrologic and earth׳s energy cycles principally come from the oceans. The exchange of energies via air-sea interactions is crucial to the understanding of climate variability, energy, and water budget. The turbulent energy fluxes are primary mechanisms through which the ocean releases the heat absorbed from the solar radiations to the environment. The eddy covariance (EC) system is the direct technique of measuring the micrometeorological parameters which allow the measurement of these turbulent fluxes in the time scale of half-hourly basis at 20 Hz over a long period. The data being presented is the comparison of the two-year seasonality patterns of monsoons variability on the measured microclimate variables in the southern South China Sea coastal area.
  6. Yaacof N, Qamaruz Zaman N, Yusup Y, Yusoff S
    Environ Sci Pollut Res Int, 2019 Aug;26(23):24286-24299.
    PMID: 31214886 DOI: 10.1007/s11356-019-05517-z
    Malaysia is the second-largest producer and exporter of palm oil amounting to 39% of world palm oil production and 44% of world exports (MPOB, 2014). An enormous amount of palm oil mill effluent is released during palm oil milling, and the effluent causes a major odor problem. Many methods, such as biofiltering, can be adopted to manage the malodor. However, these methods are expensive and require high maintenance. The separation distance method can be used as an alternative due to its low cost and effectiveness. This research was conducted to verify the performance of three different methods, namely, in-field monitoring by using an olfactometer, CALPUFF model, and Gaussian plume model. Given that no research has compared the three methods, this study examined the effectiveness of the methods and determined which among them is suitable for use in Malaysia. The appropriate separation distances were 1.3 km for in-field monitoring, 1.2 km for the CALPUFF model, and 0.5 for the Gaussian plume model. These different values of separation distance were due to the various approaches involved in each method. This research determined an appropriate means to establish a proper separation distance for reducing odor nuisance in areas around palm oil mills.
  7. Alkarkhi AF, Lim HK, Yusup Y, Teng TT, Abu Bakar MA, Cheah KS
    J Environ Manage, 2013 Jun 15;122:121-9.
    PMID: 23570974 DOI: 10.1016/j.jenvman.2013.03.010
    The ability of aluminum coagulant extracted from red earth to treat Terasil Red R (disperse) and Cibacron Red R (reactive) synthetic dye wastewater was studied. The effects of extractant concentration, soil-to-volume of extractant ratio, and the types of extracting agents (NaOH vs. KCl) on the concentration of aluminum extracted were also investigated. In addition, the efficiency of extracted aluminum was compared with aluminum sulfate, in terms of its capability to reduce the chemical oxygen demand (COD) and to remove synthetic color. Factorial design was applied to determine the effect of selected factors on the amount of aluminum extracted from red earth (i.e., pH, dose of coagulant, type of coagulant on COD reduction, and color removal). It was found that only selected factors exhibited a significant effect on the amount of aluminum extracted from red earth. It was also determined that all factors and their interactions exhibited a significant effect on COD reduction and color removal when applying the extracted aluminum in a standard coagulation process. The results were also compared to aluminum sulfate. Furthermore, NaOH was found to be a better extractant of aluminum in red earth than KCl. Therefore, the best extracting conditions for both extractants were as follows: 2 M NaOH and in a 1:5 (soil/volume of extractant) ratio; 1 M KCl and 1:5 ratio. In treating synthetic dye wastewater, the extracted coagulant showed comparable treatment efficiency to the commercial coagulant. The extracted coagulant was able to reduce the COD of the dispersed dye by 85% and to remove 99% of the color of the dispersed dye, whereas the commercial coagulant reduced 90% of the COD and removed 99% of the color of the dispersed dye. Additionally, the extracted coagulant was able to reduce the COD of the reactive dye by 73% and to remove 99% of the color of the reactive dye. However, the commercial coagulant managed to reduce the COD of the reactive dye by 94% and to remove 96% of the color for the reactive dye.
  8. Alkarkhi AFM, Alqaraghuli WAA, Yusup Y, Abu Amr SS, Mahmud MN, Dewayantoa N
    Data Brief, 2019 Jun;24:103894.
    PMID: 31011604 DOI: 10.1016/j.dib.2019.103894
    This article presents data relating to the changes in absorbance of glucose during the acid hydrolysis of sugarcane bagasse using sulphuric acid. This dataset also contains the moisture content, volatile matter, and fixed carbon of the sugarcane bagasse. The results of the analysis of variance (ANOVA) and the interaction plots between reaction time, temperature, and ratio are also presented. The data revealed that absorbance of glucose is increasing by increasing the temperature and time. Moreover, the best ratio for the highest absorbance of glucose was achieved at 1:20.
  9. Kayode JS, Yusup Y, Nawawi MNM, Ariffin KS, Kalil AE, Tagwa MG
    Data Brief, 2018 Oct;20:1525-1531.
    PMID: 30258956 DOI: 10.1016/j.dib.2018.09.014
    Energy Dispersive X-ray Analysis, EDX mapping, Scanning Electron Microscope, SEM, together with X-ray Fluorescence Analysis, XRF, was carried out to extract the needed data from some metamorphic rock samples in part of the Nigerian Southwestern Precambrian Basement Complex, NSPBC. The foremost aim is to obtain the detail subsurface geological structures of the rocks within the area and to enhanced understanding of the processes and the types of metamorphic evolution in the area. The techniques involved qualitative and quantitative data analysis of the major, minor and radioactive elements present in the samples of rocks analyzed. The data helped to experimentally evaluate the rocks microstructures, and to also explore the development of magmatic and metamorphic mechanisms for the recognition of textual associations in the area. Applications of the EDX, SEM, and XRF data analysis are effortlessly done to determine the varied mixtures of Si, Al, Ca, Fe, K, Mg, and Na, in the presence of O existing in the rocks samples.The data helped in the classification and perceptive of these rocks and it was considered as a necessary tool in the knowledge of the metamorphism and origin of the Basement Complex rocks through measurement of the intensity of the emitted X-ray and its characteristics.
  10. Yusup Y, Swesi AE, Sigid MF, Almdhun HM, Jamshidi EJ
    Mar Pollut Bull, 2023 Aug;193:115106.
    PMID: 37302202 DOI: 10.1016/j.marpolbul.2023.115106
    This paper analyzes CO2 flux between the atmosphere and a tropical coastal sea using the eddy covariance technique. Coastal carbon dioxide flux studies are limited, particularly in tropical regions. Data was collected from the study site in Pulau Pinang, Malaysia, since 2015. The research found that the site is a moderate CO2 sink and experiences seasonal monsoonal changes that affect its carbon-sink or carbon-source capability. The analysis showed that the coastal sea systematically shifted from being a carbon-sink at night to a weak carbon-source during the day possibly due to cause by the synergistic influence of wind speed and seawater temperature. The CO2 flux are also influenced by small-scale, unpredictable winds, limited fetch, developing waves, and high-buoyancy conditions caused by low wind speeds and an unstable surface layer. Furthermore, it exhibited a linear relationship with wind speed. In stable conditions, the flux was influenced by wind speed and drag coefficient, while in unstable conditions, it was mostly controlled by friction velocity and atmospheric stability. These findings could improve our understanding of the critical factors that drive CO2 flux at the tropical coast.
  11. Alhasa KM, Mohd Nadzir MS, Olalekan P, Latif MT, Yusup Y, Iqbal Faruque MR, et al.
    Sensors (Basel), 2018 Dec 11;18(12).
    PMID: 30544953 DOI: 10.3390/s18124380
    Conventional air quality monitoring systems, such as gas analysers, are commonly used in many developed and developing countries to monitor air quality. However, these techniques have high costs associated with both installation and maintenance. One possible solution to complement these techniques is the application of low-cost air quality sensors (LAQSs), which have the potential to give higher spatial and temporal data of gas pollutants with high precision and accuracy. In this paper, we present DiracSense, a custom-made LAQS that monitors the gas pollutants ozone (O₃), nitrogen dioxide (NO₂), and carbon monoxide (CO). The aim of this study is to investigate its performance based on laboratory calibration and field experiments. Several model calibrations were developed to improve the accuracy and performance of the LAQS. Laboratory calibrations were carried out to determine the zero offset and sensitivities of each sensor. The results showed that the sensor performed with a highly linear correlation with the reference instrument with a response-time range from 0.5 to 1.7 min. The performance of several calibration models including a calibrated simple equation and supervised learning algorithms (adaptive neuro-fuzzy inference system or ANFIS and the multilayer feed-forward perceptron or MLP) were compared. The field calibration focused on O₃ measurements due to the lack of a reference instrument for CO and NO₂. Combinations of inputs were evaluated during the development of the supervised learning algorithm. The validation results demonstrated that the ANFIS model with four inputs (WE OX, AE OX, T, and NO₂) had the lowest error in terms of statistical performance and the highest correlation coefficients with respect to the reference instrument (0.8 < r < 0.95). These results suggest that the ANFIS model is promising as a calibration tool since it has the capability to improve the accuracy and performance of the low-cost electrochemical sensor.
  12. Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1195-1206.
    PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072
    Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links