Displaying publications 1 - 20 of 24 in total

  1. Ang GY, Yu CY, Cheong YM, Yin WF, Chan KG
    Int. J. Antimicrob. Agents, 2016 Feb;47(2):168-9.
    PMID: 26742728 DOI: 10.1016/j.ijantimicag.2015.11.008
    Matched MeSH terms: Acinetobacter Infections/microbiology*
  2. Malik AS
    Infection, 1995 9 1;23(5):306-8.
    PMID: 8557392
    Acinetobacter calcoaceticus, a gram-negative bacterium ubiquitous in soil, water and sewage, is a rare cause of endocarditis in children. The first case of Acinetobacter endocarditis in an infant is described. This patient had underlying tetralogy of Fallot with absent pulmonary valve. A review of the literature in English revealed only four other cases of Acinetobacter endocarditis in children; three of whom had underlying congenital heart disease. Like the other reported cases, this patient responded well to antibiotic treatment. Subsequently this patient underwent corrective cardiac surgery but died of post-operative complications.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  3. Mohd Sazlly Lim S, Zainal Abidin A, Liew SM, Roberts JA, Sime FB
    J Infect, 2019 12;79(6):593-600.
    PMID: 31580871 DOI: 10.1016/j.jinf.2019.09.012
    OBJECTIVE: The objective of this works was to assess the global prevalence of multidrug-resistance among A. baumannii causing hospital-acquired (HAP) and ventilator-associated pneumonia (VAP), and describe its associated mortality.

    METHODS: We performed a systematic search of four databases for relevant studies. Meta-analysis was done based on United Nations geoscheme regions, individual countries and study period. We used a random-effects model to calculate pooled prevalence and mortality estimates with 95% confidence intervals (CIs), weighted by study size.

    RESULTS: Among 6445 reports screened, we identified 126 relevant studies, comprising data from 29 countries. The overall prevalence of multidrug-resistance among A. baumannii causing HAP and VAP pooled from 114 studies was 79.9% (95% CI 73.9-85.4%). Central America (100%) and Latin America and the Caribbean (100%) had the highest prevalence, whereas Eastern Asia had the lowest (64.6%; 95% CI, 50.2-77.6%). The overall mortality estimate pooled from 27 studies was 42.6% (95% CI, 37.2-48.1%).

    CONCLUSIONS: We observed large amounts of variation in the prevalence of multidrug-resistance among A. baumannii causing HAP and VAP and its mortality rate among regions and lack of data from many countries. Data from this review can be used in the development of customized strategies for infection control and antimicrobial stewardship.

    Matched MeSH terms: Acinetobacter Infections/microbiology*
  4. Dhabaan GN, AbuBakar S, Shorman MA, Hassan H
    J Chemother, 2012 Apr;24(2):87-92.
    PMID: 22546763 DOI: 10.1179/1120009X12Z.00000000017
    The In vitro susceptibility of clinical and environmental isolates of Acinetobacter baumannii to tigecycline and other antibiotics was determined by disk diffusion method. The E-test was used to determine the minimum inhibitory concentration (MIC). The growth curves of tigecycline treated environmental and clinical strains were established. Fifty-seven percent and 75% of the clinical and environmental isolates were MDR strains, respectively. Ninety-five percent of the clinical isolates were susceptible to tigecycline and 5% showed intermediate resistance with MIC ranging between 0.032 and 3 mg/l. Tigecycline susceptible and intermediate resistance among the environmental isolates were 40% and 60%, respectively, with a significantly lower MIC range of 0.5-4 mg/l. The bacterial growth curves demonstrated the higher ability of the environmental strains to tolerate the antibiotic effects than the clinical strains. The relatively high resistance profile among the environmental isolate suggests an insidious emergence of tigecycline resistance amongst A. baumannii. Strict infection control procedures are imperative to prevent the dissemination of tigecycline-resistant A. baumannii strains in the hospital environment.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  5. Wong EH, Subramaniam G, Navaratnam P, Sekaran SD
    Indian J Med Microbiol, 2007 Oct;25(4):391-4.
    PMID: 18087092
    Fluorescent in situ hybridization (FISH) was carried out using two different oligonucleotide probes specific for Pseudomonas spp. and Acinetobacter spp. These probes were tested against different organisms and were found to be highly specific. Sensitivity testing showed that the probes were able to detect as low as 10 3 CFU/mL. In addition, FISH was carried out directly on positive blood culture samples and the detection of microorganisms took less than 2 h. We believe that FISH is a rapid method that can be used as a routine laboratory diagnostic technique for the detection of Acinetobacter spp. and Pseudomonas spp. in clinical samples.
    Matched MeSH terms: Acinetobacter Infections/microbiology*
  6. Misbah S, AbuBakar S, Hassan H, Hanifah YA, Yusof MY
    J. Hosp. Infect., 2004 Dec;58(4):254-61.
    PMID: 15564001
    The antibiotic susceptibility profiles and the repetitive extragenic palindromic sequence-based polymerase chain reaction (REP-PCR)-determined genotypes of 109 Acinetobacter strains collected from the University Malaya Medical Center (UMMC), Kuala Lumpur, Malaysia, in 1987 (N=21) and 1996-1998 (N=88) were established. Twelve antibiotic susceptibility profiles of antibiotics used at the UMMC were obtained. In descending order of effectiveness, imipenem, amikacin and ciprofloxacin were the most effective against the Acinetobacter strains. Compared with 1987 isolates, the isolates obtained in 1996-1998 had decreased susceptibility to these antibiotics and were tolerant to the antibiotics up to an MIC90 of > or =256 mg/L. REP-PCR DNA fingerprints of all the isolates revealed the presence of four Acinetobacter spp. lineages; 92% of all the isolates belonged to two dominant lineages (genotypes 1 and 4). Genotype 4 isolates predominant in 1987 showed increased resistance and antibiotic tolerance to imipenem, amikacin and ciprofloxacin compared with the 1996-1998 isolates. In contrast, genotype 1 isolates from 1996-1998 were mainly sensitive to these antibiotics. These findings demonstrate the presence of at least two independent Acinetobacter spp. lineages in the same hospital, and suggest the possibility that genotype 4 Acinetobacter spp. acquired the resistance phenotype in situ, whereas most of the genotype 1 isolates were probably introduced to the hospital in recent years.
    Matched MeSH terms: Acinetobacter Infections/microbiology*
  7. Babaei M, Sulong A, Hamat R, Nordin S, Neela V
    PMID: 25858356 DOI: 10.1186/s12941-015-0071-7
    Antiseptics are commonly used for the management of MDR (multiple drug resistance) pathogens in hospitals. They play crucial roles in the infection control practices. Antiseptics are often used for skin antisepsis, gauze dressing, preparation of anatomical sites for surgical procedure, hand sterilization before in contact with an infected person, before an invasive procedure and as surgical scrub.
    Matched MeSH terms: Acinetobacter Infections/microbiology*
  8. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR, Peck KR, et al.
    Antimicrob Agents Chemother, 2013 Nov;57(11):5239-46.
    PMID: 23939892 DOI: 10.1128/AAC.00633-13
    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  9. Gan HM, Lean SS, Suhaili Z, Thong KL, Yeo CC
    J. Bacteriol., 2012 Nov;194(21):5979-80.
    PMID: 23045494 DOI: 10.1128/JB.01466-12
    Acinetobacter baumannii is a major cause of nosocomial infection worldwide. We report the draft genome sequence of A. baumannii AC12, a multidrug-resistant nosocomial strain with additional resistance to carbapenems and polymyxin. The genome data will provide insights into the genetic basis of antimicrobial resistance and its adaptive mechanism.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  10. Kong BH, Hanifah YA, Yusof MY, Thong KL
    Jpn. J. Infect. Dis., 2011;64(4):337-40.
    PMID: 21788713
    The resistance phenotypes and genomic diversity of 185 Acinetobacter baumannii isolates obtained from the intensive care unit (ICU) of a local teaching hospital in Kuala Lumpur from 2006 to 2009 were determined using antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Antibiogram analyses showed that the isolates were fully resistant to β-lactam antimicrobials and had high resistance rates to the other antimicrobial agents tested. However, the isolates were susceptible to polymyxin B. Resistance to cefoperazone/sulbactam was only detected in strains isolated from 2007 to 2009. Some environmental isolates and an isolate from the hands of a healthcare worker (HCW) had identical resistance profiles and PFGE profiles that were closely related to patient isolates. Cluster analyses based on the PFGE profiles showed there was a persistent clone of endemic isolates in the ICU environment. The transmission route from HCWs to fomites to patients, which caused a long-term infection in the ICU of the University Malaya Medical Centre, was observed in this study. These data provide a better understanding of A. baumannii epidemiology within the hospital and the possible transmission routes. Knowledge of changes in the resistance rates of A. baumannii in our local hospital will improve antimicrobial therapy.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  11. Islam AH, Singh KK, Ismail A
    Diagn Microbiol Infect Dis, 2011 Jan;69(1):38-44.
    PMID: 21146712 DOI: 10.1016/j.diagmicrobio.2010.09.008
    Acinetobacter baumannii is an emerging nosocomial pathogen that is resistant to many types of antibiotics, and hence, a fast, sensitive, specific, and economical test for its rapid diagnosis is needed. Development of such a test requires a specific antigen, and outer membrane proteins (OMPs) are the prime candidates. The goal of this study was to find a specific OMP of A. baumannii and demonstrate the presence of specific IgM, IgA, and IgG against the candidate protein in human serum. OMPs of A. baumannii ATCC 19606 and 16 other clinical isolates of A. baumannii were extracted from an overnight culture grown at 37 °C. Protein profiles were obtained using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and Western blot analysis was performed to detect the presence of IgM, IgA, and IgG against the OMP in host serum. An antigenic 34.4-kDa OMP was uniquely recognized by IgM, IgA, and IgG from patients with A. baumannii infection, and it did not cross-react with sera from patients with other types of infection. The band was also found in the other 16 A. baumannii isolates. This 34.4-kDa OMP is a prime candidate for development of a diagnostic test for the presence of A. baumannii.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  12. Deris ZZ, Harun A, Omar M, Johari MR
    Trop Biomed, 2009 Aug;26(2):123-9, 219-22.
    PMID: 19901898
    Acinetobacter spp. is a known nosocomial pathogen causing a wide range of clinical diseases mainly pneumonia, wound infections and blood stream infections (BSI). A cross sectional descriptive study was performed to determine the prevalence of Acinetobacter infection in Hospital Universiti Sains Malaysia, Kelantan (HUSM). The risk factors of Acinetobacter BSI were determined by 1:1 case control analytical study, involving fifty-eight confirmed cases of Acinetobacter BSI patients compared to the cases caused by Gram-negative bacteria. The prevalence of Acinetobacter BSI in the HUSM was 6.11% (95% CI 4.88-7.53%). The attack rate of Acinetobacter BSI was 2.77 episodes per 1000 hospital admissions. Acinetobacter BSI patients were mostly located in intensive care unit and had a longer intensive care unit stay. In univariate analysis, the risk factors for Acinetobacter BSI include prior exposure to antimicrobial agents such as penicillins, aminoglycosides and cephalosporins, mechanical ventilation, presence of nasogastric tube, arterial catheter and urinary catheter. In multivariate analysis, the independent risk factors for Acinetobacter BSI were prior treatment with cephalosporins (OR 3.836 95% CI 1.657-8.881 p=0.002) and mechanical ventilation (OR 3.164 95% CI 1.353-7.397 p=0.008). This study revealed that rational use of antimicrobial agents is of paramount importance to control Acinetobacter BSI.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  13. Wong EW, Yusof MY, Mansor MB, Anbazhagan D, Ong SY, Sekaran SD
    Singapore Med J, 2009 Aug;50(8):822-6.
    PMID: 19710984
    The AdeABC pump of Acinetobacter spp. confers resistance to various antibiotic classes. This pump is composed of the AdeA, AdeB, and AdeC proteins where AdeB is a member of the resistance-nodulation-division efflux pump superfamily. The adeA, adeB, and adeC genes are contiguous and adjacent to adeS and adeR, which are transcribed in the opposite direction and which specify proteins homologous to sensors and regulators of two-component systems, respectively. In this study, an attempt is made to elucidate the role of the AdeABC efflux pump in carbapenem resistance in Acinetobacter spp.
    Matched MeSH terms: Acinetobacter Infections/microbiology*
  14. Loh LC, Yii CT, Lai KK, Seevaunnamtum SP, Pushparasah G, Tong JM
    Clin Microbiol Infect, 2006 Jun;12(6):597-8.
    PMID: 16700715
    Matched MeSH terms: Acinetobacter Infections/microbiology*
  15. Wan Nor Amilah WA, Noor Izani NJ, Ng WK, Ashraful Haq J
    Trop Biomed, 2012 Dec;29(4):588-97.
    PMID: 23202604
    Clinical utilization of carbapenems remains under threat with the emergence of acquired carbapenemase-producing bacteria, particularly metallo-β-lactamases (MBL). Rapid detection of MBL-producing Gram-negative bacilli is essential to prevent their widespread dissemination. However, no standardized detection method is available for routine laboratory use. The purpose of the study was to evaluate a chelating-agent based double disk synergic test and disk potentiation test for MBL-producing strain detection and to determine the isolation rate of MBL-producing Pseudomonas aeruginosa and Acinetobacter from clinical samples in our tertiary teaching hospital. A total of 22 and 66 imipenem-resistant P. aeruginosa and Acinetobacter isolates respectively were tested with ceftazidime (CAZ) disk by modified double disk synergic test and disk potentiation test using ethylenediaminetetraacetic acid (EDTA) and 2-mercaptopropionic acid (as chelating agents) to detect MBL production. The tests were compared with EDTA-phenanthroline-imipenem (EPI) microdilution MIC test as gold standard. MBL positive strains were detected in 17 (77.3%) P. aeruginosa and 2 (3.5%) Acinetobacter isolates. The disk potentiation test with 2-mercaptopropionic acid (2-MPA) dilution of 1:12 provided the most acceptable sensitivities and specificities (88.2% sensitivity and 100% specificity in P. aeruginosa; 100% sensitivity and specificity in Acinetobacter) compared to other screening methods used in this study. This study provided useful information on the local prevalence of MBL-producing P. aeruginosa and Acinetobacter in our hospital. Disc potentiation test with CAZ/2-MPA disc appears to be reliable and convenient MBL detection method in the routine clinical laboratory.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  16. Kengkla K, Kongpakwattana K, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N
    J Antimicrob Chemother, 2018 Jan 01;73(1):22-32.
    PMID: 29069421 DOI: 10.1093/jac/dkx368
    Objectives: To comprehensively compare and rank the efficacy and safety of available treatment options for patients with MDR and XDR Acinetobacter baumannii (AB) infection.

    Methods: We searched PubMed, Embase and the Cochrane register of trials systematically for studies that examined treatment options for patients with MDR- and XDR-AB infections until April 2016. Network meta-analysis (NMA) was performed to estimate the risk ratio (RR) and 95% CI from both direct and indirect evidence. Primary outcomes were clinical cure and microbiological cure. Secondary outcomes were all-cause mortality and nephrotoxic and non-nephrotoxic adverse events.

    Results: A total of 29 studies with 2529 patients (median age 60 years; 65% male; median APACHE II score 19.0) were included. Although there were no statistically significant differences between treatment options, triple therapy with colistin, sulbactam and tigecycline had the highest clinical cure rate. Colistin in combination with sulbactam was associated with a significantly higher microbiological cure rate compared with colistin in combination with tigecycline (RR 1.23; 95% CI 1.03-1.47) and colistin monotherapy (RR 1.21; 95% CI 1.06-1.38). No significant differences in all-cause mortality were noted between treatment options. Tigecycline-based therapy also appeared less effective for achieving a microbiological cure and is not appropriate for treating bloodstream MDR- and XDR-AB infections.

    Conclusions: Combination therapy of colistin with sulbactam demonstrates superiority in terms of microbiological cure with a safety profile similar to that of colistin monotherapy. Thus, our findings support the use of this combination as a treatment for MDR- and XDR-AB infections.

    Matched MeSH terms: Acinetobacter Infections/microbiology
  17. Nor A'shimi MH, Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Abdullah FH, et al.
    J Infect Dev Ctries, 2019 07 31;13(7):626-633.
    PMID: 32065820 DOI: 10.3855/jidc.11455
    INTRODUCTION: Acinetobacter baumannii is a Gram-negative nosocomial pathogen that has the capacity to develop resistance to all classes of antimicrobial compounds. However, very little is known regarding its susceptibility to biocides (antiseptics and disinfectants) and capacity to form biofilms, particularly for Malaysian isolates.

    AIM: To determine the susceptibility of A. baumannii isolates to commonly-used biocides, investigate their biofilm-forming capacities and the prevalence of biocide resistance and biofilm-associated genes.

    METHODOLOGY: . The minimum inhibitory concentration (MIC) values of 100 A. baumannii hospital isolates from Terengganu, Malaysia, towards the biocides benzalkonium chloride (BZK), benzethonium chloride (BZT) and chlorhexidine digluconate (CLX), were determined by broth microdilution. The isolates were also examined for their ability to form biofilms in 96-well microplates. The prevalence of biocide resistance genes qacA, qacE and qacDE1 and the biofilm-associated genes bap and abaI were determined by polymerase chain reaction (PCR).

    RESULTS: Majority of the A. baumannii isolates (43%) showed higher MIC values (> 50 µg/mL) for CLX than for BZK (5% for MIC > 50 µg/mL) and BZT (9% for MIC > 50 µg/mL). The qacDE1 gene was predominant (63%) followed by qacE (28%) whereas no isolate was found harbouring qacA. All isolates were positive for the bap and abaI genes although the biofilm-forming capacity varied among the isolates.

    CONCLUSION: The Terengganu A. baumannii isolates showed higher prevalence of qacDE1 compared to qacE although no correlation was found with the biocides' MIC values. No correlation was also observed between the isolates' biofilm-forming capacity and the MIC values for the biocides.

    Matched MeSH terms: Acinetobacter Infections/microbiology*
  18. Ng CK, How KY, Tee KK, Chan KG
    Genes (Basel), 2019 04 08;10(4).
    PMID: 30965610 DOI: 10.3390/genes10040282
    Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
    Matched MeSH terms: Acinetobacter Infections/microbiology
  19. Biglari S, Alfizah H, Ramliza R, Rahman MM
    J. Med. Microbiol., 2015 Jan;64(Pt 1):53-8.
    PMID: 25381148 DOI: 10.1099/jmm.0.082263-0
    Antimicrobial resistance in Acinetobacter baumannii is a growing public health concern and an important pathogen in nosocomial infections. We investigated the genes involved in resistance to carbapenems and cephalosporins in clinical A. baumannii isolates from a tertiary medical centre in Malaysia. A. baumannii was isolated from 167 clinical specimens and identified by sequencing of the 16S rRNA and rpoB genes. The MIC for imipenem, meropenem, ceftazidime and cefepime were determined by the E-test method. The presence of carbapenemase and cephalosporinase genes was investigated by PCR. The isolates were predominantly nonsusceptible to carbapenems and cephalosporins (>70 %) with high MIC values. ISAba1 was detected in all carbapenem-nonsusceptible A. baumannii harbouring the blaOXA-23-like gene. The presence of blaOXA-51-like and ISAba1 upstream of blaOXA-51 was not associated with nonsusceptibility to carbapenems. A. baumannii isolates harbouring ISAba1-blaADC (85.8 %) were significantly associated with nonsusceptibility to cephalosporins (P<0.0001). However, ISAba1-blaADC was not detected in a minority (<10 %) of the isolates which were nonsusceptible to cephalosporins. The acquired OXA-23 enzymes were responsible for nonsusceptibility to carbapenems in our clinical A. baumannii isolates and warrant continuous surveillance to prevent further dissemination of this antibiotic resistance gene. The presence of ISAba1 upstream of the blaADC was a determinant for cephalosporin resistance. However, the absence of this ISAba1-blaADC in some of the isolates may suggest other resistance mechanisms and need further investigation.
    Matched MeSH terms: Acinetobacter Infections/microbiology*
  20. Deris ZZ, Shafei MN, Harun A
    Asian Pac J Trop Biomed, 2011 Aug;1(4):313-5.
    PMID: 23569782 DOI: 10.1016/S2221-1691(11)60050-6
    To determine the risk factors and outcomes of imipenem-resistant Acinetobacter baumannii (IRAB) bloodstream infection (BSI) cases, since there is very little publication on Acinetobacter baumannii infections from Malaysia.
    Matched MeSH terms: Acinetobacter Infections/microbiology
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links