Displaying all 4 publications

Abstract:
Sort:
  1. Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, et al.
    Fitoterapia, 2016 Jul;112:116-31.
    PMID: 27259370 DOI: 10.1016/j.fitote.2016.05.016
    The last few decades have seen an alarming rise in fungal infections, which currently represent a global health threat. Despite extensive research towards the development of new antifungal agents, only a limited number of antifungal drugs are available in the market. The routinely used polyene agents and many azole antifungals are associated with some common side effects such as severe hepatotoxicity and nephrotoxicity. Also, antifungal resistance continues to grow and evolve and complicate patient management, despite the introduction of new antifungal agents. This suitation requires continuous attention. Cinnamaldehyde has been reported to inhibit bacteria, yeasts, and filamentous molds via the inhibition of ATPases, cell wall biosynthesis, and alteration of membrane structure and integrity. In this regard, several novel cinnamaldehyde derivatives were synthesized with the claim of potential antifungal activities. The present article describes antifungal properties of cinnamaldehyde and its derivatives against diverse classes of pathogenic fungi. This review will provide an overview of what is currently known about the primary mode of action of cinnamaldehyde. Synergistic approaches for boosting the effectiveness of cinnamaldehyde and its derivatives have been highlighted. Also, a keen analysis of the pharmacologically active systems derived from cinnamaldehyde has been discussed. Finally, efforts were made to outline the future perspectives of cinnamaldehyde-based antifungal agents. The purpose of this review is to provide an overview of current knowledge about the antifungal properties and antifungal mode of action of cinnamaldehyde and its derivatives and to identify research avenues that can facilitate implementation of cinnamaldehyde as a natural antifungal.
    Matched MeSH terms: Acrolein/analogs & derivatives*
  2. Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M
    PLoS ONE, 2016;11(8):e0161707.
    PMID: 27560927 DOI: 10.1371/journal.pone.0161707
    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
    Matched MeSH terms: Acrolein/analogs & derivatives
  3. Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, et al.
    Phytomedicine, 2015 Feb 15;22(2):297-300.
    PMID: 25765836 DOI: 10.1016/j.phymed.2015.01.003
    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro.
    Matched MeSH terms: Acrolein/analogs & derivatives
  4. Chigurupati S, Shaikh SA, Mohammad JI, Selvarajan KK, Nemala AR, Khaw CH, et al.
    Indian J Pharmacol, 2017 10 17;49(3):229-235.
    PMID: 29033482 DOI: 10.4103/ijp.IJP_293_16
    OBJECTIVES: In this study, three (CS-1 to CS-3) azomethine derivatives of cinnamaldehyde were green synthesized, characterized, and their antioxidant and antidepressant activities were explored.

    MATERIALS AND METHODS: The antioxidant effect of these compounds was initially performed in vitro using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay methods before subjecting them to in vivo experiments. Compounds showing potent antioxidant activity (CS-1 and CS-2) were investigated further for their antidepressant activity using the forced swim test (FST) and tail suspension test (TST). Ascorbic acid (AA) and fluoxetine (20 mg/kg, p.o) were used as reference drugs for comparison in the antioxidant and antidepressant experiments, respectively.

    RESULTS: It was observed that CS-2 and CS-3 exhibited highest DPPH (half maximal inhibitory concentration [IC50]: 16.22 and 25.18 μg/mL) and ABTS (IC50: 17.2 and 28.86 μg/mL) radical scavenging activity, respectively, compared to AA (IC50: 15.73 and 16.79 μg/mL) and therefore, both CS-2 and CS-3 were tested for their antidepressant effect using FST and TST as experimental models. Pretreatment of CS-2 and CS-3 (20 mg/kg) for 10 days considerably decreased the immobility time in both the FST and TST models.

    CONCLUSION: The antioxidant and antidepressant effect of CS-2 and CS-3 may be attributed to the presence of azomethine linkage in the molecule.

    Matched MeSH terms: Acrolein/analogs & derivatives*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links