METHODS: A cross-sectional study using self-developed survey form was conducted at 13 Medical Rehabilitation Clinics in Malaysia among 541 upper and lower limb amputees of any duration and cause.
RESULTS: The study population had a mean age of 54 years. Majority were males, Malays, married and had completed secondary school. About 70% of amputations were performed due to DM complications and at transtibial level. Fifty-eight percent of unilateral lower limb amputees were using prosthesis with a mean (standard deviation) of 6.48 (±4.55) hours per day. Time since amputation was the true factor associated with prosthesis usage. Longer hours of prosthesis use per day was positively correlated with longer interval after prosthesis restoration (r=0.467).
CONCLUSION: Higher aetiology of DM and lower prosthesis usage among amputees may be because of high prevalence of DM in Malaysia. The prosthesis usage and hours of use per day were low compared to the international reports, which may be influenced by sampling location and time since amputation. Nevertheless, this is a novel multicentre study on the characteristics and prosthesis usage of amputees. Hopefully, this research will assist to support, facilitate and promote prosthesis rehabilitation in Malaysia.
OBJECTIVES:: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot.
STUDY DESIGN:: Experimental Assessment.
METHODS:: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO-9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition.
RESULTS:: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance.
CONCLUSION:: A better understanding of dynamic characteristics of the feet can help tune the feet to the user's requirements in promoting a better gait performance.
CLINICAL RELEVANCE: The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.
METHODS: PubMed, Web of Science, and Google Scholar databases were explored to find related articles. Search terms were amputees, artificial limb, prosthetic suspension, prosthetic liner, vacuum, and prosthesis. The results were refined by vacuum socket or vacuum assisted suspension or sub-atmospheric suspension. Study design, research instrument, sample size, and outcome measures were reviewed. An online questionnaire was also designed and distributed worldwide among professionals and prosthetists (www.ispoint.org, OANDP-L, LinkedIn, personal email).
FINDINGS: 26 articles were published from 2001 to March 2016. The number of participants averaged 7 (SD=4) for transtibial and 6 (SD=6) for transfemoral amputees. Most studies evaluated the short-term effects of vacuum systems by measuring stump volume changes, gait parameters, pistoning, interface pressures, satisfaction, balance, and wound healing. 155 professionals replied to the questionnaire and supported results from the literature. Elevated vacuum systems may have some advantages over the other suspension systems, but may not be appropriate for all people with limb loss.
INTERPRETATION: Elevated vacuum suspension could improve comfort and quality of life for people with limb loss. However, future investigations with larger sample sizes are needed to provide strong statistical conclusions and to evaluate long-term effects of these systems.
STUDY DESIGN: Prospective study.
METHODS: Looped liners with hook fastener and Iceross Dermo Liner with pin/lock system were mechanically tested using a tensile testing machine in terms of system safety. A total of 10 transtibial amputees participated in this study and were asked to use these two different suspension systems. The pistoning was measured between the liner and socket through a photographic method. Three static axial loading conditions were implemented, namely, 30, 60, and 90 N. Furthermore, subjective feedback was obtained.
RESULTS: Tensile test results showed that both systems could safely tolerate the load applied to the prosthesis during ambulation. Clinical evaluation confirmed extremely low pistoning in both systems (i.e. less than 0.4 cm after adding 90 N traction load to the prosthesis). Subjective feedback also showed satisfaction with both systems. However, less traction at the end of the residual limb was reported while looped liner was used.
CONCLUSION: The looped liner with hook fastener is safe and a good alternative for individuals with transtibial amputation as this system could solve some problems with the current systems. Clinical relevance The looped liner and hook fastener were shown to be good alternative suspension for people with lower limb amputation especially those who have difficulty to use and align the pin/lock systems. This system could safely tolerate centrifugal forces applied to the prosthesis during normal and fast walking.