Displaying all 20 publications

Abstract:
Sort:
  1. Jamaluddin AA, Chang KW, Johar MS, Yaacob H
    Acta Vet Scand Suppl, 1988;84:194-6.
    PMID: 3232606
    Matched MeSH terms: Animal Diseases/epidemiology*
  2. WELLS CW
    Med J Malaya, 1956 Sep;11(1):71-5.
    PMID: 13399544
    Matched MeSH terms: Animal Diseases*
  3. Strauss JM, Sivanandam S
    Med J Malaya, 1966 Jun;20(4):336.
    PMID: 4224351
    Matched MeSH terms: Animal Diseases/epidemiology*
  4. Sheikh-Omar AR, Mutalib AR
    Vet Rec, 1985 Mar 23;116(12):330-1.
    PMID: 3992849
    Matched MeSH terms: Animal Diseases/etiology
  5. Mullin SW, Colley FC, Welch QB
    PMID: 806971
    Matched MeSH terms: Animal Diseases/immunology; Animal Diseases/epidemiology; Animal Diseases/parasitology*
  6. Mohd Nor MN, Abu Mustapa AJ, Abu Hassan MA, Chang KW
    Rev. - Off. Int. Epizoot., 2003 Aug;22(2):485-97.
    PMID: 15884584
    The Department of Veterinary Services (DVS) in Malaysia was established in 1888 as an agency to control exotic and domestic animal diseases. Over the years, the structure and functions of the organisation have evolved to meet the growing demand for veterinary services. The responsibilities of the Veterinary Services are enshrined in the Constitution of Malaysia. The current organisation of the DVS is structured to achieve the following objectives:---to prevent, control and eradicate animal and zoonotic diseases--to facilitate the growth and development of a strong animal industry--to ensure that animal products for human consumption are wholesome, clean, safe and suitable to be consumed--to facilitate the growth and development of the animal feed industry--to ensure the welfare and well-being of all animals. To meet these objectives the DVS has nine different divisions, as follows: Planning and Evaluation, Epidemiology and Veterinary Medicine, Veterinary Public Health, Research and Development, Industry Development, Production and Development of Genetic Resources, Human Resource Development (HRD), Enforcement, and Administration. The development of the animal industry is managed through national development policies, including the Third National Agriculture Policy. The basis for current programmes for disease control and animal industry development is the Eighth Development Plan (2001-2005). Over the period of this Plan, Malaysia will address the need for sanitary and phytosanitary measures by developing specific programmes covering all fields of the animal industry. This is just one way in which Malaysia is meeting the challenges of the increased liberalisation of trade created by the World Trade Organization and the Association of Southeast Asian Nations Free Trade Area. The development of the industry is focused on the major commodities, namely, beef, mutton, poultry meat, eggs, pork and milk. Other commodities receive support if it is considered economically viable. All support services are being strengthened, particularly the HRD division. The organisation and functions of the DVS are constantly being reviewed in accordance with changes in the animal industry and the nature of the services in demand.
    Matched MeSH terms: Animal Diseases/prevention & control*; Animal Diseases/transmission
  7. Hashim HD
    Rev. - Off. Int. Epizoot., 1999 Apr;18(1):47-51.
    PMID: 10190203
    Besides response and recovery, prevention and preparedness are the two critical components of any contingency plan. The author discusses the various elements which must be present in the prevention and preparedness plan of countries in Asia. As the continent has such diverse peoples and veterinary infrastructures, the actual plan may vary from one country to another, but must incorporate those elements which are crucial to ensure the success of the preparedness plan.
    Matched MeSH terms: Animal Diseases/epidemiology; Animal Diseases/prevention & control*
  8. Lin CN, Chan KR, Ooi EE, Chiou MT, Hoang M, Hsueh PR, et al.
    Viruses, 2021 07 30;13(8).
    PMID: 34452372 DOI: 10.3390/v13081507
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus in humans, has expanded globally over the past year. COVID-19 remains an important subject of intensive research owing to its huge impact on economic and public health globally. Based on historical archives, the first coronavirus-related disease recorded was possibly animal-related, a case of feline infectious peritonitis described as early as 1912. Despite over a century of documented coronaviruses in animals, the global animal industry still suffers from outbreaks. Knowledge and experience handling animal coronaviruses provide a valuable tool to complement our understanding of the ongoing COVID-19 pandemic. In this review, we present an overview of coronaviruses, clinical signs, COVID-19 in animals, genome organization and recombination, immunopathogenesis, transmission, viral shedding, diagnosis, treatment, and prevention. By drawing parallels between COVID-19 in animals and humans, we provide perspectives on the pathophysiological mechanisms by which coronaviruses cause diseases in both animals and humans, providing a critical basis for the development of effective vaccines and therapeutics against these deadly viruses.
    Matched MeSH terms: Animal Diseases/epidemiology; Animal Diseases/virology*
  9. Yan CZY, Austin CM, Ayub Q, Rahman S, Gan HM
    FEMS Microbiol Lett, 2019 09 01;366(17).
    PMID: 31589302 DOI: 10.1093/femsle/fnz211
    The Malaysian and global shrimp aquaculture production has been significantly impacted by acute hepatopancreatic necrosis disease (AHPND) typically caused by Vibrio parahaemolyticus harboring the pVA plasmid containing the pirAVp and pirBVp genes, which code for Photorhabdus insect-related (Pir) toxin. The limited genomic resource for V. parahaemolyticus strains from Malaysian aquaculture farms precludes an in-depth understanding of their diversity and evolutionary relationships. In this study, we isolated shrimp-associated and environmental (rearing water) V. parahaemolyticus from three aquaculture farms located in Northern and Central Malaysia followed by whole-genome sequencing of 40 randomly selected isolates on the Illumina MiSeq. Phylogenomic analysis and multilocus sequence typing (MLST) reveal distinct lineages of V. parahaemolyticus that harbor the pirABVp genes. The recovery of pVA plasmid backbone devoid of pirAVp or pirABVp in some V. parahaemolyticus isolates suggests that the toxin genes are prone to deletion. The new insight gained from phylogenomic analysis of Asian V. parahaemolyticus, in addition to the observed genomic instability of pVa plasmid, will have implications for improvements in aquaculture practices to diagnose, treat or limit the impacts of this disease.
    Matched MeSH terms: Animal Diseases/microbiology*; Animal Diseases/epidemiology
  10. Adesipo A, Fadeyi O, Kuca K, Krejcar O, Maresova P, Selamat A, et al.
    Sensors (Basel), 2020 Oct 22;20(21).
    PMID: 33105622 DOI: 10.3390/s20215977
    Attention has shifted to the development of villages in Europe and other parts of the world with the goal of combating rural-urban migration, and moving toward self-sufficiency in rural areas. This situation has birthed the smart village idea. Smart village initiatives such as those of the European Union is motivating global efforts aimed at improving the live and livelihood of rural dwellers. These initiatives are focused on improving agricultural productivity, among other things, since most of the food we eat are grown in rural areas around the world. Nevertheless, a major challenge faced by proponents of the smart village concept is how to provide a framework for the development of the term, so that this development is tailored towards sustainability. The current work examines the level of progress of climate smart agriculture, and tries to borrow from its ideals, to develop a framework for smart village development. Given the advances in technology, agricultural development that encompasses reduction of farming losses, optimization of agricultural processes for increased yield, as well as prevention, monitoring, and early detection of plant and animal diseases, has now embraced varieties of smart sensor technologies. The implication is that the studies and results generated around the concept of climate smart agriculture can be adopted in planning of villages, and transforming them into smart villages. Hence, we argue that for effective development of the smart village framework, smart agricultural techniques must be prioritized, viz-a-viz other developmental practicalities.
    Matched MeSH terms: Animal Diseases
  11. Tang KS
    Life Sci, 2020 Oct 15;259:118287.
    PMID: 32814066 DOI: 10.1016/j.lfs.2020.118287
    Alzheimer's disease (AD) is a fatal neurodegenerative disease that requires immediate attention. Oxidative stress that leads to the generation of reactive oxygen species is a contributing factor to the disease progression by promoting synthesis and deposition of amyloid-β, the main hallmark protein in AD. It has been previously demonstrated that nanoyttria possesses antioxidant properties and can alleviate cellular oxidative injury in various toxicity and disease models. This review proposed that nanoyttria could be used for the treatment of AD. In this paper, the evidence on the antioxidant potential of nanoyttria is presented and its prospects on AD therapy are discussed.
    Matched MeSH terms: Animal Diseases
  12. Oda K, Igarashi A, Kheong CT, Hong CC, Vijayamalar B, Sinniah M, et al.
    PMID: 9185254
    Serum specimens were collected from 6 species of animals living in 9 states of Malaysia including Sabah, North Borneo in 1993. Antibodies against Japanese encephalitis (JE) virus in these sera were detected by means of hemagglutination-inhibition (HI) and neutralization (NT) tests. By HI test, 702 of 2,152 (32.6%) sera showed positive results. Higher positive rates were obtained by the NT test, in which 1,787 of 1,927 (92.7%) sera had antibodies against JE virus. All serum specimens with positive HI were confirmed as positive by the NT. Swine sera showed especially higher rates of antibody positive and higher antibody titers compared with other animals. These results suggest that JE infections are widely distributed among many animals of Malaysia, and pig is the most susceptible amplifier host for JE virus.
    Matched MeSH terms: Animal Diseases/epidemiology*
  13. Park AW, Yaacob HB
    J Nihon Univ Sch Dent, 1991 Dec;33(4):211-43.
    PMID: 1787417
    Belief in a golden age has provided mankind with solace in times of despair and with élan during the expansive periods of history. Dreamers imagine the golden age in the remote past, in paradise lost, free from toil and grief. Optimists put their faith in the future and believe that mankind, Prometheus-like, will master the arts of life through power and knowledge. Thus, the golden age means different things to different men, but the very belief in its existence implies the conviction that perfect health and happiness are birthrights of men. Yet, in reality, complete freedom from disease and from struggle is almost incompatible with the process of living.
    Matched MeSH terms: Animal Diseases/history
  14. Sadiq MB, Syed-Hussain SS, Ramanoon SZ, Saharee AA, Ahmad NI, Mohd Zin N, et al.
    Prev Vet Med, 2018 Aug 01;156:76-83.
    PMID: 29891148 DOI: 10.1016/j.prevetmed.2018.04.013
    The increasing public health problem of antimicrobial resistance (AMR) has been linked to the extensive antimicrobial use (AMU) in food animals. We conducted a survey among ruminant farmers in Selangor, Malaysia to assess their level of awareness on AMR, attitudes towards AMU, and determinants that influence their practices. The survey was developed in English and Malay, validated, and administered to ruminant farmers in Selangor. A total of 84 farmers (response rate of 55%) completed the structured questionnaire. They appeared to be little aware of AMR and the impact on animals and public health. Indications of inappropriate AMU include their misconception on conditions requiring antibiotic therapy and easy accessibility to antibiotics. More than 70% (60/84) of the respondents believed that all sick animals need to be given antimicrobials. Half of the farmers especially those involved in the production of small and large ruminants; namely mixed ruminant farmers (MRF) (63%, 31/49) indicated that antimicrobials do not have any side effects in animals. Sixty-four percent (54/84) of the farmers have stored antimicrobials in their farms of which the practice was more common (P = 0.02) among the MRF compared to the single ruminant farmers (SRF). Although most of the farmers felt good farm biosecurity will help reduce AMU, they were indifferent regarding using antimicrobials only when prescribed by a veterinarian and non-storage of antimicrobials for later uses. Farmers with larger herd size (>100 animals/herd) and few years of farming experience agreed more to the suggestions about their role and that of veterinarians respectively in reducing the drivers of AMR. These areas might need to be considered by advisors to inform ruminant farmers on AMR and to encourage them for prudent AMU in food-producing animals.
    Matched MeSH terms: Animal Diseases/prevention & control*
  15. Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, et al.
    Microb Genom, 2021 05;7(5).
    PMID: 33952389 DOI: 10.1099/mgen.0.000549
    The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10-55 p.p.t.), temperature (23-37 °C) and pH (6-10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
    Matched MeSH terms: Animal Diseases/microbiology*
  16. Abba Y, Hassim H, Hamzah H, Ibrahim OE, Mohd Lila MA, Noordin MM
    Microb Pathog, 2017 Mar;104:17-27.
    PMID: 28062291 DOI: 10.1016/j.micpath.2017.01.003
    Boid inclusion body disease (BIBD) is a viral disease of boid snakes believed to be caused by reptarenavirus belonging to the family Arenaviridae. Unlike most mammalian arenaviruses, the reservoir host for reptarenavirus is still unknown. In this study, the pathological responses were evaluated in a mouse model for a period of 28 days. Blood and tissue samples (lung, liver, spleen, heart, kidney and brain) were collected for evaluation of hematology, biochemistry, histopathology and oxidative enzyme levels at six time points (1, 3, 7, 14, 21 and 28 days), after viral infection (2.0 × 10(6) pfu/mL) in the infected and normal saline in the control groups. An initial increase (p 
    Matched MeSH terms: Animal Diseases/genetics; Animal Diseases/metabolism; Animal Diseases/pathology; Animal Diseases/virology
  17. Nor Azliza I, Hafizi R, Nurhazrati M, Salleh B
    Sains Malaysiana, 2014;43:89-94.
    The Fusarium species are notoriously known for causing various plants and animal diseases and producing a number of harmful mycotoxins. The mycotoxins production by species recovered from non-agricultural hosts such as wild grasses have hitherto never been given attention. We examined 30 strains representing 12 Fusarium species i.e. F. oxysporum, F. solani, F. semitectum, F. nelsonii, F. compactum, F. equiseti, F. chlamydosporum, F. proliferatum, F. subglutinans, F. sacchari, F. lateritium and F. incarnatum-equiseti species complex isolated from wild grasses in Peninsular Malaysia for the production of four major mycotoxins i.e. moniliformin (MON), fumonisin BI (FB1), zearalenone (ZEN) and beauvericin (BEA) using TLC and HPLC techniques. BEA was the highest frequency of mycotoxin detected, followed by MON, ZEN and FB1. This study also presented the first report of BEA production by F. solani, F. compactum and F. chlamydosporum. All mycotoxins were not produced by F. nelsonii and F. lateritium. All Fusarium species were isolated from asymptomatic grasses, hence they are likely to exist as endophytes or latent pathogens.
    Matched MeSH terms: Animal Diseases
  18. Little PB
    Can. Vet. J., 1979 Jan;20(1):13-21.
    PMID: 761153
    The report summarizes a one year period of investigation of death losses in West Malaysian livestock. Lesions and etiological agents are mentioned for cattle, sheep, goats, swine, poultry and companion animals as well as some miscellaneous species. Special observations related to a common paramphistome induced hepatic biliary infestation in cattle, a serious malignant head catarrh outbreak in which possible cattle to cow aerosol transmission occurred. Trismus observed in some cattle with malignant head catarrh was associated with arteriolitis and ganglioneuritis of the V cranial nerve. Parasitic, bacterial, viral toxic and neoplastic diseases are recorded in the various species. The occurrence of fatal chronic fluorosis in laboratory guinea pigs and cerebral nematodiasis in a Thoroughbred racehorse are documented.
    Matched MeSH terms: Animal Diseases/epidemiology*
  19. Asgar MA, Fazilah A, Huda N, Bhat R, Karim AA
    Compr Rev Food Sci Food Saf, 2010 Sep;9(5):513-529.
    PMID: 33467834 DOI: 10.1111/j.1541-4337.2010.00124.x
      The direct consumption of vegetable proteins in food products has been increasing over the years because of animal diseases, global shortage of animal protein, strong demand for wholesome and religious (halal) food, and economic reasons. The increasing importance of legume and oilseed proteins in the manufacturing of various functional food products is due to their high-protein contents. However, the greatest obstacle to utilizing these legumes and oilseeds is the presence of antinutrients; but these antinutrients can be successfully removed or inactivated by employing certain processing methods. In contrast, the potential negative impact of the antinutrients is partially balanced by the fact that they may have a health-promoting role. Legumes and oilseeds provide well-balanced amino acid profiles when consumed with cereals. Soybean proteins, wheat gluten, cottonseed proteins, and other plant proteins have been used for texturization. Texturized vegetable proteins can extend meat products while providing an economical, functional, and high-protein food ingredient or can be consumed directly as a meat analog. Meat analogs are successful because of their healthy image (cholesterol free), meat-like texture, and low cost. Mycoprotein is fungal in origin and is used as a high-protein, low-fat, health-promoting food ingredient. Mycoprotein has a good taste and texture. Texturized vegetable proteins and a number of mycoprotein products are accepted as halal foods. This article summarizes information regarding the molecular, nutritional, and functional properties of alternative protein sources to meat and presents current knowledge to encourage further research to optimize the beneficial effects of alternative protein sources.
    Matched MeSH terms: Animal Diseases
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links