Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Ponnuchamy S, Kanchithalaivan S, Ranjith Kumar R, Ali MA, Choon TS
    Bioorg. Med. Chem. Lett., 2014 Feb 15;24(4):1089-93.
    PMID: 24472146 DOI: 10.1016/j.bmcl.2014.01.007
    A series of novel hybrid heterocycles comprising arylidene thiazolidine-2,4-dione and 1-cyclopropyl-2-(2-fluorophenyl)ethanone were synthesized. These compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv in High Throughput Screen. Most of the hybrid arylidene thiazolidine-2,4-diones displayed moderate to good activity with MIC of less than 50 μM. Compound 1m exhibited maximum potency being 5.87 fold more active at EC50 and 6.26 fold more active at EC90 than the standard drug pyrimethamine.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  2. Ismail Hossain M, El-Harbawi M, Noaman YA, Bustam MA, Alitheen NB, Affandi NA, et al.
    Chemosphere, 2011 Jun;84(1):101-4.
    PMID: 21421256 DOI: 10.1016/j.chemosphere.2011.02.048
    Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  3. Ngaini Z, Fadzillah SM, Hussain H
    Nat Prod Res, 2012;26(10):892-902.
    PMID: 21678160 DOI: 10.1080/14786419.2010.502896
    A series of (E)-1-(4-alkyloxyphenyl)-3-(hydroxyphenyl)-prop-2-en-1-one have been successfully synthesised via Claisen-Schmidt condensation. The synthesised chalcone derivatives consisted of hydroxyl groups at either ortho, meta or para position and differed in the length of the alkyl groups, C (n) H(2) (n) (+1,) where n = 6, 10, 12 and 14. The structures of all compounds were defined by elemental analysis, IR, (1)H- and (13)C-NMR. The antimicrobial studies were carried out against wild-type Escherichia coli American Type Culture Collection 8739 to evaluate the effect of the hydroxyl and the alkyl groups of the synthesised chalcones. All the synthesised compounds have shown significant antimicrobial activities. The optimum inhibition was dependent on the position of the hydroxyl group as well as the length of the alkyl chains.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  4. Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS
    Bioorg. Med. Chem. Lett., 2013 Mar 1;23(5):1383-6.
    PMID: 23352268 DOI: 10.1016/j.bmcl.2012.12.069
    A series of fourteen dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions and were screened for their antimycobacterial activity against Mycobacterium tuberculosis H(37)Rv in HTS (High Throughput Screen). Most of the compounds showed moderate to good activity with MIC of less than 20 μM. Compound 4'-(4-bromophenyl)-1'-methyldispiro[acenaphthylene-1,2'-pyrrolidine-3',2″-indane]-2,1″(1H)-dione (4c) was found to be the most active with MIC of 12.50 μM.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  5. Abbasi MA, Fatima Z, Rehman AU, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Sep;32(5):1957-1964.
    PMID: 31813858
    The present study comprises the synthesis of a new series of benzenesulfonamides derived from N-sulfonation of 2-(4-methoxyphenyl)-1-ethanamine (1). The synthesis was initiated by the reaction of 2-(4-methoxyphenyl)-1-ethanamine (1) with benzenesulfonyl chloride (2), to yield N-(4-methoxyphenethyl)benzenesulfonamide (3). This parent molecule 3 was subsequently treated with various alkyl/aralkyl halides (4a-j) in N,N-dimethylformamide (DMF) and in the presence of a weak base lithium hydride (LiH) to obtain various N-(alkyl/aralkyl)-N-(4-methoxyphenethyl) benzenesulfonamides (5a-j). The characterization of these derivatives was carried out by spectroscopic techniques like IR, 1H-NMR, and 13C-NMR. Elemental analysis also supported this data. The biofilm inhibitory action of all the synthesized compounds was carried out on Escherichia coli and some of the compounds were identified to be very suitable inhibitors of this bacterial strain. Furthermore, the molecules were also tested for their cytotoxicity behavior to assess their utility as less cytotoxic therapeutic agents.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  6. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN
    Int J Nanomedicine, 2014;9:121-7.
    PMID: 24379670 DOI: 10.2147/IJN.S52306
    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  7. Chandrakantha B, Isloor AM, Shetty P, Fun HK, Hegde G
    Eur J Med Chem, 2014 Jan;71:316-23.
    PMID: 24321835 DOI: 10.1016/j.ejmech.2013.10.056
    A new series of N-[5-(4-(alkyl/aryl)-3-nitro-phenyl)-[1,3,4-thiadiazol-2-yl]-2,2-dimethyl-propionamide 4 (a-l) and 6-(4-Methoxy-phenyl)-2-(4-alkyl/aryl)-3-nitro-phenyl)-Imidazo [2,1-b] [1,3,4] thiadiazole 6 (a-l) were synthesized starting from 5-(4-Fluoro-3-nitro-phenyl)-[1,3,4] thiadiazole-2-ylamine. The synthesized compounds were characterized by IR, NMR, mass spectral and elemental analysis. All the compounds were tested for antibacterial and antifungal activities. The antimicrobial activities of the compounds were assessed by well plate method (zone of inhibition). Compounds 4a, 4c and 6e, 6g displayed appreciable activity at the concentration 0.5-1.0 mg/mL.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  8. Hossain MI, El-Harbawi M, Alitheen NB, Noaman YA, Lévêque JM, Yin CY
    Ecotoxicol Environ Saf, 2013 Jan;87:65-9.
    PMID: 23107478 DOI: 10.1016/j.ecoenv.2012.09.020
    Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  9. Ali MA, Ismail R, Choon TS, Pandian S, Hassan Ansari MZ
    J Enzyme Inhib Med Chem, 2011 Aug;26(4):598-602.
    PMID: 21714764 DOI: 10.3109/14756366.2010.529805
    In this study, a series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized and evaluated for antimycobacterial activity against Mycobacterium tuberculosis (MTB) H(37)Rv and isoniazid resistant M. tuberculosis (INHR-MTB). All the newly synthesized compounds were showing moderate to high inhibitory activities. The compound 6,7-dimethoxy-3-(4-chloro phenyl)-4H-indeno[1,2-c]isoxazole (4b) was found to be the most promising compound, active against MTB H(37)Rv and INHR-MTB with minimum inhibitory concentrations of 0.22 and 0.34 μM.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  10. Hoidy WH, Ahmad MB, Al-Mulla EA, Yunus WM, Ibrahim Na
    J Oleo Sci, 2010;59(1):15-9.
    PMID: 20032595
    In this study, fatty haydroxamic acids (FHAs), which have biological activities as antibiotics and antifungal, have been synthesized via refluxing of triacylglycrides, palm olein, palm stearin or corn oil with hydroxylamine hydrochloride. The products were characterized using the complex formation test of hydroxamic acid group with zinc(I), copper(II) and iron(III), various technique methods including nuclear magnetic resonance ((1)H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Parameters that may affect the conversion of oils to FHAs including the effect of reaction time, effect of organic solvent and effect of hydro/oil molar issue were also investigated in this study. Results of characterization indicate that FHAs were successfully produced from triacylglycrides. The conversion percentages of palm stearin, palm olein and corn oil into their fatty hydroxamic acids are 82, 81 and 78, respectively. Results also showed that hexane is the best organic solvent to produce the FHAs from the three oils used in this study. The optimum reaction time to achieve the maximum conversion percentage of the oils to FHAs was found to be 10 hours for all the three oils, while the optimum molar ration of hydro/to oil was found to be 7:1 for all the different three oils.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  11. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    Biomed Res Int, 2016;2016:5891703.
    PMID: 27563671 DOI: 10.1155/2016/5891703
    The problem of bacteria resistance to many known agents has inspired scientists and researchers to discover novel efficient antibacterial drugs. Three rapid, clean, and highly efficient methods were developed for one-pot synthesis of 7-(aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives. Three components are condensed in the synthesis, 4-hydroxycoumarin, 5,5-dimethyl-1,3-cyclohexanedione, and aromatic aldehydes, using tetrabutylammonium bromide (TBAB), diammonium hydrogen phosphate (DAHP), or ferric chloride (FeCl3), respectively. Each method has different reaction mechanisms according to the catalyst. The present methods have advantages, including one-pot synthesis, excellent yields, short reaction times, and easy isolation of product. All catalysts utilized in our study could be reused several times without losing their catalytic efficiency. All synthesized compounds were fully characterized and evaluated for their antibacterial activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  12. Hong W, Li J, Chang Z, Tan X, Yang H, Ouyang Y, et al.
    J Antibiot (Tokyo), 2017 Jul;70(7):832-844.
    PMID: 28465626 DOI: 10.1038/ja.2017.55
    The emergence of drug resistance in bacterial pathogens is a growing clinical problem that poses difficult challenges in patient management. To exacerbate this problem, there is currently a serious lack of antibacterial agents that are designed to target extremely drug-resistant bacterial strains. Here we describe the design, synthesis and antibacterial testing of a series of 40 novel indole core derivatives, which are predicated by molecular modeling to be potential glycosyltransferase inhibitors. Twenty of these derivatives were found to show in vitro inhibition of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Four of these strains showed additional activity against Gram-negative bacteria, including extended-spectrum beta-lactamase producing Enterobacteriaceae, imipenem-resistant Klebsiella pneumoniae and multidrug-resistant Acinetobacter baumanii, and against Mycobacterium tuberculosis H37Ra. These four compounds are candidates for developing into broad-spectrum anti-infective agents.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  13. Rehman A, Siddiqa A, Abbasi MA, Siddiqui SZ, Khan SG, Rasool S, et al.
    Pak J Pharm Sci, 2018 Sep;31(5):1783-1790.
    PMID: 30150171
    A number of novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives (6a-l) have been synthesized to evaluate their antibacterial activity. Using aryl/aralkyl carboxylic acids (1a-l) as precursors, 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l) were yielded in good amounts. The derivatives, 4a-l, were subjected to electrophilic substitution reaction on stirring with 6-bromo-3,4-methylenedioxybenzyl chloride (5) in DMF to synthesize the required compounds. All the synthesized molecules were well characterized by IR, 1H-NMR, 13C-NMR and EIMS spectral data and evaluated for antibacterial activity against some bacterial strains of Gram-bacteria. The molecule, 6d, demonstrated the best activity among all the synthesized molecules exhibiting weak to moderate inhibition potential.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  14. Iqbal J, Rehman A, Abbasi MA, Siddiqui SZ, Khalid H, Laulloo SJ, et al.
    Pak J Pharm Sci, 2020 Jan;33(1):149-160.
    PMID: 32122843
    A series of new compounds (5a-q), derived from 5-(1-(4-nitrophenylsulfonyl) piperidin-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol (3) were proficiently synthesized to evaluate their biological activities. 1-(4-Nitrophenylsulfonyl) piperidine-4-carbohydrazide (2) was refluxed with phenylisothiocyanate to yield an adduct which was cyclized to compound 3 by reflux reaction with 10 % potassium hydroxide. The targeted compounds 5a-q, were synthesized by stirring alkyl/aralkyl halides (4a-q) and compound 3 in a polar aprotic solvent. 1H-NMR, 13C-NMR, EI-MS and IR spectral techniques were employed to confirm the structures of all the synthesized compounds. The compounds were biologically evaluated for BSA binding studies followed by anti-bacterial, anti-inflammatory and acetylcholinesterase (AChE) activities. The active sites responsible for the best AChE inhibition were identified through molecular docking studies. Compound 5e bearing 4-chlorobenzyl moiety found most active antibacterial and anti-inflammatory agent among the synthesized compounds. The whole library of synthesized compounds except compounds 5d and 5f was found highly active for AChE inhibition and recommended for in vivo studies so that their therapeutic applications may come in utilization.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  15. Rehman A, Aslam SJ, Abbasi MA, Siddiqui SZ, Rasool S, Shah SAA
    Pak J Pharm Sci, 2019 May;32(3):987-996.
    PMID: 31278711
    Heterocyclic chemistry is an important field of organic chemistry due to therapeutic potential. The minor modification in the structure of poly-functional compounds has great effect on therapeutic ability. In the presented research work, substituted 1,3,4-oxadiazole derivatives, 8a-p, have been synthesized by the reaction of 1-(4-bromomethylbenzenesulfonyl)-3-methylpiperidine (7) and 5-substituted-1,3,4-oxadiazole-2-thiol (4a-p). The 5-substituted-1,3,4-oxadiazole-2-thiol were synthesized by converting carboxylic acids correspondingly into esters, hydrazides and oxadiazoles. Secondly the electrophile, 1-(4-Bromomethylbenzenesulfonyl)-3-methylpiperidine (7), was prepared by the reaction of 3-methylpiperidine with 4-bromomethylbenzenesulfonyl chloride in the presence of water and Na2CO3 under pH of 9-10. The compounds were structurally corroborated through spectroscopic data analysis of IR, EI-MS and 1H-NMR. The screening for antibacterial activity revealed the compounds to be moderate to excellent inhibitors against bacteria under study. Anti-enzymatic activity was assessed against urease enzyme and 1-{[4-({[5-(3-nitrophenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)phenyl]sulfonyl}-3-methylpiperidine (8d) was the most active one.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  16. Ranjani B, Pandian K, Kumar GA, Gopinath SCB
    Int J Biol Macromol, 2019 Jul 15;133:1280-1287.
    PMID: 31051204 DOI: 10.1016/j.ijbiomac.2019.04.196
    Silver nanoparticle was synthesized using D-glucosamine chitosan base as green reducing agent at elevated temperature in alkaline pH ranges. The excess of D-glucosamine chitosan base was used as it is both stabilizing and reducing agent at different pHs, regulates the shape and size of the silver nanoparticles. The progressive growth of silver nanoparticles was monitored by UV-Visible spectral studies. A sharp peak at 420 nm indicates the formation of spherical silver nanoparticles. The size and shape of silver nanoparticles were observed from Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) methods. The anisotropically grown nanoparticles were used as probe for Surface Enhanced Raman Studies (SERS) using ATP (4-aminothiophenol) as a model system. The catalytic behavior of silver nanoparticles was exploited for 4-nitrophenol reduction and observed that the reduction reaction follows pseudo first order kinetics with a rate constant 0.65 min. The antibacterial activity of silver nanoparticles was also tested for both gram-positive and -negative microorganisms, in which higher zone of inhibition was observed for gram negative microorganism.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  17. Imran S, Taha M, Ismail NH, Khan KM, Naz F, Hussain M, et al.
    Molecules, 2014;19(8):11722-40.
    PMID: 25102118 DOI: 10.3390/molecules190811722
    In an effort to develop new antibacterial drugs, some novel bisindolylmethane derivatives containing Schiff base moieties were prepared and screened for their antibacterial activity. The synthesis of the bisindolylmethane Schiff base derivatives 3-26 was carried out in three steps. First, the nitro group of 3,3'-((4-nitrophenyl)-methylene)bis(1H-indole) (1) was reduced to give the amino substituted bisindolylmethane 2 without affecting the unsaturation of the bisindolylmethane moiety using nickel boride in situ generated. Reduction of compound 1 using various catalysts showed that combination of sodium borohydride and nickel acetate provides the highest yield for compound 2. Bisindolylmethane Schiff base derivatives were synthesized by coupling various benzaldehydes with amino substituted bisindolylmethane 2. All synthesized compounds were characterized by various spectroscopic methods. The bisindolylmethane Schiff base derivatives were evaluated against selected Gram-positive and Gram-negative bacterial strains. Derivatives having halogen and nitro substituent display weak to moderate antibacterial activity against Salmonella typhi, S. paratyphi A and S. paratyphi B.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  18. Kumar CS, Loh WS, Ooi CW, Quah CK, Fun HK
    Molecules, 2013 Oct 15;18(10):12707-24.
    PMID: 24132195 DOI: 10.3390/molecules181012707
    Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a-i) containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  19. Al-Adiwish WM, Tahir MI, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob WA
    Eur J Med Chem, 2013 Jun;64:464-76.
    PMID: 23669354 DOI: 10.1016/j.ejmech.2013.04.029
    New 5-aminopyrazoles 2a-c were prepared in high yields from the reaction of known α,α-dicyanoketene-N,S-acetals 1a-c with hydrazine hydrate under reflux in ethanol. These compounds were utilized as intermediates to synthesize pyrazolo[1,5-a]-pyrimidines 3a-c, 4a-d, 5a-c, and 6a-c, as well as pyrazolo[5,1-c][1,2,4]triazines 7a-c and 8a-c, by the reaction of 2-[bis(methylthio)methylene]malononitrile, α,α-dicyanoketene-N,S-acetals 1a-b, acetylacetone, acetoacetanilide as well as acetylacetone, and malononitrile, respectively. Furthermore, cyclization of 2a-c with pentan-2,5-dione yielded the corresponding 5-pyrrolylpyrazoles 9a-c. Moreover, fusion of 2a-c with acetic anhydride resulted in the corresponding 1-acetyl-1H-pyrazoles 10a-c. The antibacterial activity and cytotoxicity against Vero cells of several selected compounds are also reported.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  20. Rajasekaran A, Murugesan S, AnandaRajagopal K
    Arch. Pharm. Res., 2006 Jul;29(7):535-40.
    PMID: 16903071
    Several novel 1-[2-(1H-tetrazol-5-yl) ethyl]-1H-benzo[d][1,2,3]triazoles (3a-h) have been synthesized by the condensation of 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) and appropriate acid chlorides. 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) was synthesized by reacting 3-(1H-benzo[d][1,2,3]triazol-1-yl)propanenitrile with sodium azide and ammonium chloride in the presence of dimethylformamide. The synthesized compounds were characterized by IR and PMR analysis. The titled compounds were evaluated for their in-vitro antibacterial and antifungal activity by the cup plate method and anticonvulsant activity evaluated by the maximal electroshock induced convulsion method in mice. All synthesized compounds exhibited moderate antibacterial activity against Bacillus subtilis and moderate antifungal activity against Candida albicans. Compounds 5-(2-(1H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(4-aminophenyl)methanone 3d and 5-(2-(1 H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(2-aminophenyl)methanone 3e elicited excellent anticonvulsant activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links