METHODS: In a regional HIV observational cohort in the Asia-Pacific region, patients with viral suppression (2 consecutive viral loads <400 copies/mL) and a CD4 count ≥200 cells per microliter who had CD4 testing 6 monthly were analyzed. Main study end points were occurrence of 1 CD4 count <200 cells per microliter (single CD4 <200) and 2 CD4 counts <200 cells per microliter within a 6-month period (confirmed CD4 <200). A comparison of time with single and confirmed CD4 <200 with biannual or annual CD4 assessment was performed by generating a hypothetical group comprising the same patients with annual CD4 testing by removing every second CD4 count.
RESULTS: Among 1538 patients, the rate of single CD4 <200 was 3.45/100 patient-years and of confirmed CD4 <200 was 0.77/100 patient-years. During 5 years of viral suppression, patients with baseline CD4 200-249 cells per microliter were significantly more likely to experience confirmed CD4 <200 compared with patients with higher baseline CD4 [hazard ratio, 55.47 (95% confidence interval: 7.36 to 418.20), P < 0.001 versus baseline CD4 ≥500 cells/μL]. Cumulative probabilities of confirmed CD4 <200 was also higher in patients with baseline CD4 200-249 cells per microliter compared with patients with higher baseline CD4. There was no significant difference in time to confirmed CD4 <200 between biannual and annual CD4 measurement (P = 0.336).
CONCLUSIONS: Annual CD4 monitoring in virally suppressed HIV patients with a baseline CD4 ≥250 cells per microliter may be sufficient for clinical management.
DESIGN: Prospective studies of HIV-infected individuals in Europe and the US included in the HIV-CAUSAL Collaboration.
METHODS: Antiretroviral therapy-naive and AIDS-free individuals were followed from the time they started an NRTI, efavirenz or nevirapine, classified as following one or both types of regimens at baseline, and censored when they started an ineligible drug or at 6 months if their regimen was not yet complete. We estimated the 'intention-to-treat' effect for nevirapine versus efavirenz regimens on clinical, immunologic, and virologic outcomes. Our models included baseline covariates and adjusted for potential bias introduced by censoring via inverse probability weighting.
RESULTS: A total of 15 336 individuals initiated an efavirenz regimen (274 deaths, 774 AIDS-defining illnesses) and 8129 individuals initiated a nevirapine regimen (203 deaths, 441 AIDS-defining illnesses). The intention-to-treat hazard ratios [95% confidence interval (CI)] for nevirapine versus efavirenz regimens were 1.59 (1.27, 1.98) for death and 1.28 (1.09, 1.50) for AIDS-defining illness. Individuals on nevirapine regimens experienced a smaller 12-month increase in CD4 cell count by 11.49 cells/μl and were 52% more likely to have virologic failure at 12 months as those on efavirenz regimens.
CONCLUSIONS: Our intention-to-treat estimates are consistent with a lower mortality, a lower incidence of AIDS-defining illness, a larger 12-month increase in CD4 cell count, and a smaller risk of virologic failure at 12 months for efavirenz compared with nevirapine.
METHODS AND FINDINGS: We reviewed all GenBank submissions of HIV-1 reverse transcriptase sequences with or without protease and identified 287 studies published between March 1, 2000, and December 31, 2013, with more than 25 recently or chronically infected ARV-naïve individuals. These studies comprised 50,870 individuals from 111 countries. Each set of study sequences was analyzed for phylogenetic clustering and the presence of 93 surveillance drug-resistance mutations (SDRMs). The median overall TDR prevalence in sub-Saharan Africa (SSA), south/southeast Asia (SSEA), upper-income Asian countries, Latin America/Caribbean, Europe, and North America was 2.8%, 2.9%, 5.6%, 7.6%, 9.4%, and 11.5%, respectively. In SSA, there was a yearly 1.09-fold (95% CI: 1.05-1.14) increase in odds of TDR since national ARV scale-up attributable to an increase in non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance. The odds of NNRTI-associated TDR also increased in Latin America/Caribbean (odds ratio [OR] = 1.16; 95% CI: 1.06-1.25), North America (OR = 1.19; 95% CI: 1.12-1.26), Europe (OR = 1.07; 95% CI: 1.01-1.13), and upper-income Asian countries (OR = 1.33; 95% CI: 1.12-1.55). In SSEA, there was no significant change in the odds of TDR since national ARV scale-up (OR = 0.97; 95% CI: 0.92-1.02). An analysis limited to sequences with mixtures at less than 0.5% of their nucleotide positions—a proxy for recent infection—yielded trends comparable to those obtained using the complete dataset. Four NNRTI SDRMs—K101E, K103N, Y181C, and G190A—accounted for >80% of NNRTI-associated TDR in all regions and subtypes. Sixteen nucleoside reverse transcriptase inhibitor (NRTI) SDRMs accounted for >69% of NRTI-associated TDR in all regions and subtypes. In SSA and SSEA, 89% of NNRTI SDRMs were associated with high-level resistance to nevirapine or efavirenz, whereas only 27% of NRTI SDRMs were associated with high-level resistance to zidovudine, lamivudine, tenofovir, or abacavir. Of 763 viruses with TDR in SSA and SSEA, 725 (95%) were genetically dissimilar; 38 (5%) formed 19 sequence pairs. Inherent limitations of this study are that some cohorts may not represent the broader regional population and that studies were heterogeneous with respect to duration of infection prior to sampling.
CONCLUSIONS: Most TDR strains in SSA and SSEA arose independently, suggesting that ARV regimens with a high genetic barrier to resistance combined with improved patient adherence may mitigate TDR increases by reducing the generation of new ARV-resistant strains. A small number of NNRTI-resistance mutations were responsible for most cases of high-level resistance, suggesting that inexpensive point-mutation assays to detect these mutations may be useful for pre-therapy screening in regions with high levels of TDR. In the context of a public health approach to ARV therapy, a reliable point-of-care genotypic resistance test could identify which patients should receive standard first-line therapy and which should receive a protease-inhibitor-containing regimen.