Displaying publications 1 - 20 of 105 in total

Abstract:
Sort:
  1. Emelia O, Zeehaida M, Sulaiman O, Rohela M, Saadatnia G, Yeng C, et al.
    J Immunoassay Immunochem, 2010;31(1):79-91.
    PMID: 20391020 DOI: 10.1080/15321810903405134
    We have developed an ELISA that employs monoclonal anti-Toxoplasma SAG1 (p30) as the capture antibody to detect T. gondii circulating antigens in patients' serum samples. Using serum spiked with Toxoplasma soluble and with SAG1 recombinant proteins, the detection limits were 31.25 ng/mL and 62.50 ng/mL, respectively. We obtained positive results in 28% (21/75) and 11% (23/206) of probable active and chronic toxoplasmosis serum samples, respectively. Western blot analysis on pooled antigen-positive serum samples showed antigenic bands of molecular weights 25 and 75 kDa from sera of probable active infection and five antigenic bands ranging in size from 26 to 33 kDa from chronic infection sera. This assay would be useful as an initial serum selection step in developing a Toxoplasma antigen detection test and for characterization studies.
    Matched MeSH terms: Antigens, Protozoan/blood*
  2. Ng YL, Fong MY, Lau YL
    Trop Biomed, 2021 Jun 01;38(2):159-164.
    PMID: 34172705 DOI: 10.47665/tb.38.2.052
    The Plasmodium knowlesi apical membrane antigen-1 (PkAMA-1) plays an important role in the invasion of the parasite into its host erythrocyte, and it has been regarded as a potential vaccine candidate against human knowlesi malaria. This study investigates genetic diversity and natural selection of the full length PkAMA-1 of P. knowlesi clinical isolates from Peninsular Malaysia. Blood samples were collected from P. knowlesi malaria patients from Peninsular Malaysia. The PkAMA-1 gene was amplified from DNA samples using PCR, cloned into a plasmid vector and sequenced. Results showed that nucleotide diversity of the full length PkAMA-1 from Peninsular Malaysia isolates (π: 0.006) was almost similar to that of Sarawak (π: 0.005) and Sabah (π: 0.004) isolates reported in other studies. Deeper analysis revealed Domain I (π: 0.007) in the PkAMA-1 had the highest diversity as compared to Domain II (π: 0.004) and Domain III (π: 0.003). Z-test indicated negative (purifying) selection of the gene. Combined alignment analysis at the amino acid level for the Peninsular Malaysia and Sarawak PkAMA-1 sequences revealed 34 polymorphic sites. Thirty-one of these sites were dimorphic, and 3 were trimorphic. The amino acid sequences could be categorised into 31 haplotypes. In the haplotype network, PkAMA-1 from Peninsular Malaysia and Sarawak were separated into two groups.
    Matched MeSH terms: Antigens, Protozoan/genetics*
  3. Wan Nazri WSM, Lau YL, Cheong FW
    Trop Biomed, 2024 Sep 01;41(3):356-362.
    PMID: 39548790 DOI: 10.47665/tb.41.3.016
    Plasmodium knowlesi, primarily a zoonotic malaria species is the most common malaria pathogen in the Southeast Asia especially in Malaysian Borneo, Malaysia. Due to morphological resemblance of P. knowlesi to other human Plasmodium, the sensitivity for microscopic detection of P. knowlesi, which is the gold standard, is compromised. Thus, efforts have been made in finding alternatives for the disease diagnosis. This study described the potential use of anti-PkTRAMP polyclonal antibodies in sandwich ELISA for P. knowlesi detection. Anti-PkTRAMP polyclonal antibodies raised from mice and rabbit were first evaluated for their binding capability towards native proteins in P. knowlesi lysates using Western blot. These mice and rabbit polyclonal antibodies were then used in the sandwich ELISA as capture and detection antibodies, respectively. P. knowlesi A1H1 culture was utilised to determine the limit of detection (LOD) of this assay. Its clinical performance was determined by testing with archived human malaria and uninfected samples. Western blot analysis affirmed the polyclonal antibodies reactivity to P. knowlesi. The LOD obtained from three replicated assays was at 0.015% parasitaemia. The assay has 76% sensitivity and 75% specificity for P. knowlesi. Its positive and negative predictive values were 76% and 75%, respectively. No cross reactivity with P. falciparum and healthy samples was observed, except for P. vivax where 10 out of 12 samples were detected. In conclusion, anti-PkTRAMP polyclonal antibodies can be useful in detecting P. knowlesi. Regardless, the full potential of anti-PkTRAMP antibodies for diagnostic purposes need to be explored further.
    Matched MeSH terms: Antigens, Protozoan/immunology
  4. Fong MY, Lau YL, Zulqarnain M
    Biotechnol Lett, 2008 Apr;30(4):611-8.
    PMID: 18043869
    The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/immunology; Antigens, Protozoan/metabolism*
  5. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    Parasit Vectors, 2015;8:315.
    PMID: 26062975 DOI: 10.1186/s13071-015-0932-0
    Serological investigation remains the primary approach to achieve satisfactory results in Toxoplasma gondii identification. However, the accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize, so significant efforts have been made to find alternative reagents as capture antigens. Consequently, multi-epitope peptides are promising diagnostic markers, with the potential for improving the accuracy of diagnostic kits. In this study, we described a simple, inexpensive and improved strategy to acquire such diagnostic markers. The study was aimed at producing novel synthetic protein consisting of multiple immunodominant epitopes of several T. gondii antigens.
    Matched MeSH terms: Antigens, Protozoan/blood*; Antigens, Protozoan/genetics; Antigens, Protozoan/immunology
  6. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
    Matched MeSH terms: Antigens, Protozoan/genetics*; Antigens, Protozoan/immunology; Antigens, Protozoan/metabolism
  7. Ramly NZ, Dix SR, Ruzheinikov SN, Sedelnikova SE, Baker PJ, Chow YP, et al.
    Commun Biol, 2021 03 19;4(1):376.
    PMID: 33742128 DOI: 10.1038/s42003-021-01904-w
    In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/metabolism*; Antigens, Protozoan/chemistry
  8. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

    Matched MeSH terms: Antigens, Protozoan/immunology*; Antigens, Protozoan/metabolism; Antigens, Protozoan/chemistry*
  9. Ching XT, Lau YL, Fong MY, Nissapatorn V, Andiappan H
    Biomed Res Int, 2014;2014:690529.
    PMID: 24987700 DOI: 10.1155/2014/690529
    Toxoplasma gondii infects all warm-blooded animals, including humans, causing serious public health problems and great economic loss for the food industry. Commonly used serological tests require costly and hazardous preparation of whole Toxoplasma lysate antigens from tachyzoites. Here, we have evaluated an alternative method for antigen production, which involved a prokaryotic expression system. Specifically, we expressed T. gondii dense granular protein-5 (GRA5) in Escherichia coli and isolated it by affinity purification. The serodiagnostic potential of the purified recombinant GRA5 (rGRA5) was tested through Western blot analysis against 212 human patient serum samples. We found that rGRA5 protein was 100% specific for analysis of toxoplasmosis-negative human sera. Also, rGRA5 was able to detect acute and chronic T. gondii infections (sensitivities of 46.8% and 61.2%, resp.).
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/chemistry*
  10. Lau YL, Fong MY, Idris MM, Ching XT
    PMID: 23082548
    Detection of Toxoplasma gondii infection is essential in pregnant women and immunosuppressed patients. Numerous studies have shown that the recombinant production of several Toxoplasma antigens, including dense granule antigens (GRAs) has high potential as diagnostic reagents. In the present study, we produced GRA2 using Pichia pastoris system. RNA of T. gondii RH strain tachyzoite was used as a template to produce cDNA clones of full-length GRA2 via reverse transcriptase PCR. Amplicons were inserted into pPICZalpha A and the recombinant plasmid transformed into P. pastoris, X-33 strain. The expressed recombinant protein was identified by SDS-PAGE and Western blotting. A recombinant protein of -28 kDa was produced, which could be detected by toxoplasmosis positive human sera indicating that the recombinant protein retained its antigenicity. The present study indicates that P. pastoris-expressed GRA2 should be useful for detection of Toxoplasma infection.
    Matched MeSH terms: Antigens, Protozoan/genetics*; Antigens, Protozoan/metabolism
  11. Atique Ahmed M, Kang HJ, Quan FS
    Korean J Parasitol, 2019 Aug;57(4):445-450.
    PMID: 31533414 DOI: 10.3347/kjp.2019.57.4.445
    Human infections due to the monkey malaria parasite Plasmodium knowlesi is increasingly being reported from most Southeast Asian countries specifically Malaysia. The parasite causes severe and fatal malaria thus there is a need for urgent measures for its control. In this study, the level of polymorphisms, haplotypes and natural selection of full-length pkmsp8 in 37 clinical samples from Malaysian Borneo along with 6 lab-adapted strains were investigated. Low levels of polymorphism were observed across the full-length gene, the double epidermal growth factor (EGF) domains were mostly conserved, and non-synonymous substitutions were absent. Evidence of strong negative selection pressure in the non-EGF regions were found indicating functional constrains acting at different domains. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. This is the first study to genetically characterize the full-length msp8 gene from clinical isolates of P. knowlesi from Malaysia; however, further functional characterization would be useful for future rational vaccine design.
    Matched MeSH terms: Antigens, Protozoan/genetics*; Antigens, Protozoan/immunology
  12. Lai MY, Abdul-Majid N, Lau YL
    Acta Parasitol, 2019 Sep;64(3):575-581.
    PMID: 31165984 DOI: 10.2478/s11686-019-00066-4
    Toxoplasma gondii is one of the most successful human pathogens. To eliminate the infection, identification of receptors or binding partners from humans is indeed urgent. T. gondii surface antigen is the ultimate component involved during the attachment of parasite into host cell. However, mechanism of invasion between SAG and host-cell membrane remains unclear. Yeast two-hybrid experiment was used to identify the binding partners from cDNA human library by using T. gondii SAG1 as bait. Mated yeast cells were plated on DDO/X plates to confirm only prey plasmid that expressing interacting protein was selected. We detected 39 clones interacted with SAG1 based on a series of the selection procedures. After colony PCR, only 29 clones were positive and subsequently sent for sequencing. The yeast plasmids for true positive clones were rescued by transformation into E. coli TOP 10F' cells. Twenty-two clones were further examined by small-scale Y2H experiment. The results indicated that a strong interaction existed between Homo sapiens lysine-rich coil-coiled and SAG1 protein, which could activate the expressions of the reporter genes in diploid yeast. Co-immunoprecipitation experiment result indicated the binding between this prey and SAG1 protein was significant (Mann-Whitney U test, Z = - 1.964, P = 0.05). H. sapiens lysine-rich coil-coiled protein was found to be interacted with SAG1. This prey protein may serve as the potential drug target in vaccination study.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/metabolism*
  13. Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, et al.
    Exp Parasitol, 2014 Oct;145:34-41.
    PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002
    We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
    Matched MeSH terms: Antigens, Protozoan/analysis; Antigens, Protozoan/metabolism
  14. Amerizadeh A, Idris ZM, Khoo BY, Kotresha D, Yunus MH, Karim IZ, et al.
    Microb Pathog, 2013 Jan;54:60-6.
    PMID: 23044055 DOI: 10.1016/j.micpath.2012.09.006
    Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. Chronically-infected individuals with a compromised immune system are at risk for reactivation of the disease. In-vivo induced antigen technology (IVIAT) is a promising method for the identification of antigens expressed in-vivo. The aim of the present study was to apply IVIAT to identify antigens which are expressed in-vivo during T. gondii infection using sera from individuals with chronic toxoplasmosis. Forty serum samples were pooled, pre-adsorped against three different preparations of antigens, from each in-vitro grown T. gondii and Escherichia coli XLBlue MRF', and then used to screen a T. gondii cDNA expression library. Sequencing of DNA inserts from positive clones showed eight open reading frames with high homology to T. gondii genes. Expression analysis using quantitative real-time PCR showed that SAG1-related sequence 3 (SRS3) and two hypothetical genes were up-regulated in-vivo relative to their expression levels in-vitro. These three proteins also showed high sensitivity and specificity when tested with individual serum samples. Five other proteins namely M16 domain peptidase, microneme protein, elongation factor 1-alpha, pre-mRNA-splicing factor and small nuclear ribonucleoprotein F had lower RNA expression in-vivo as compared to in-vitro. SRS3 and the two hypothetical proteins warrant further investigation into their roles in the pathogenesis of toxoplasmosis.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/immunology*
  15. Chan KH, Chandramathi S, Suresh K, Chua KH, Kuppusamy UR
    Parasitol Res, 2012 Jun;110(6):2475-80.
    PMID: 22278727 DOI: 10.1007/s00436-011-2788-3
    The pathogenesis of Blastocystis hominis in human hosts has always been a matter of debate as it is present in both symptomatic and asymptomatic individuals. A recent report showed that B. hominis isolated from an asymptomatic individual could facilitate the proliferation and growth of existing cancer cells while having the potential to downregulate the host immune response. The present study investigated the differences between the effects of symptomatic and asymptomatic derived solubilized antigen of B. hominis (Blasto-Ag) on the cell viability and proliferation of colorectal cancer cells. Besides that, the gene expression of cytokine and nuclear transcriptional factors in response to the symptomatic and asymptomatic B. hominis antigen in HCT116 was also compared. In the current study, an increase in cell proliferation was observed in HCT116 cells which led to the speculation that B. hominis infection could facilitate the growth of colorectal cancer cells. In addition, a more significant upregulation of Th2 cytokines observed in HCT116 may lead to the postulation that symptomatic Blasto-Ag may have the potential in weakening the cellular immune response, allowing the progression of existing tumor cells. The upregulation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) was observed in HCT116 exposed to symptomatic Blasto-Ag, while asymptomatic Blasto-Ag exhibited an insignificant effect on NF-κB gene expression in HCT116. HCT116 cells exposed to symptomatic and asymptomatic Blasto-Ag caused a significant upregulation of CTSB which lead to the postulation that the Blasto-Ag may enhance the invasive and metastasis properties of colorectal cancer. In conclusion, antigen isolated from a symptomatic individual is more pathogenic as compared to asymptomatic isolates as it caused a more extensive inflammatory reaction as well as more enhanced proliferation of cancer cells.
    Matched MeSH terms: Antigens, Protozoan/isolation & purification; Antigens, Protozoan/metabolism*
  16. Han ET, Song TE, Park JH, Shin EH, Guk SM, Kim TY, et al.
    Am J Trop Med Hyg, 2004 Dec;71(6):745-9.
    PMID: 15642964
    To study the genetic diversity of re-emerging Plasmodium vivax in the Republic of Korea, nucleotide sequence variations at the merozoite surface protein-3alpha (PvMSP-3alpha) locus were analyzed using 24 re-emerging isolates and 4 isolates from imported cases. Compared with the well known Belem strain (Brazil), a large number of amino acid substitutions, deletions, and insertions were found at the locus of the isolates examined. The Korean isolates were divided into two allelic types; type I (15 isolates), similar to the Belem strain, and type II (9), similar to the Chess strain (New Guinea). Isolates from imported cases were classified into three types; type III (1 from Malaysia), similar to type B from western Thailand, type IV (1 each from Indonesia and India), and type V (1 from Pakistan), both being new types. Our results have shown that the MSP-3alpha locus of re-emerging Korean P. vivax is dimorphic with two allelic types coexisting in the endemic area.
    Matched MeSH terms: Antigens, Protozoan/genetics*; Antigens, Protozoan/chemistry
  17. Vulliez-Le Normand B, Faber BW, Saul FA, van der Eijk M, Thomas AW, Singh B, et al.
    PLoS One, 2015;10(4):e0123567.
    PMID: 25886591 DOI: 10.1371/journal.pone.0123567
    The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of the erythrocyte, is currently being pursued in human vaccine trials against P. falciparum. Recent vaccine trials in macaques using the P. knowlesi orthologue PkAMA1 have shown that it protects against infection by this parasite species and thus should be developed for human vaccination as well. Here, we present the crystal structure of Domains 1 and 2 of the PkAMA1 ectodomain, and of its complex with the invasion-inhibitory monoclonal antibody R31C2. The Domain 2 (D2) loop, which is displaced upon binding the Rhoptry Neck Protein 2 (RON2) receptor, makes significant contacts with the antibody. R31C2 inhibits binding of the Rhoptry Neck Protein 2 (RON2) receptor by steric blocking of the hydrophobic groove and by preventing the displacement of the D2 loop which is essential for exposing the complete binding site on AMA1. R31C2 recognizes a non-polymorphic epitope and should thus be cross-strain reactive. PkAMA1 is much less polymorphic than the P. falciparum and P. vivax orthologues. Unlike these two latter species, there are no polymorphic sites close to the RON2-binding site of PkAMA1, suggesting that P. knowlesi has not developed a mechanism of immune escape from the host's humoral response to AMA1.
    Matched MeSH terms: Antigens, Protozoan/immunology; Antigens, Protozoan/chemistry*
  18. Fong MY, Cheong FW, Lau YL
    Parasit Vectors, 2018 Sep 26;11(1):527.
    PMID: 30257710 DOI: 10.1186/s13071-018-3118-8
    BACKGROUND: The merozoite of the zoonotic Plasmodium knowlesi invades human erythrocytes via the binding of its Duffy binding protein (PkDBPαII) to the Duffy antigen on the eythrocytes. The Duffy antigen has two immunologically distinct forms, Fya and Fyb. In this study, the erythrocyte-binding assay was used to quantitatively determine and compare the binding level of PkDBPαII to Fya+/b+ and Fya+/b- human erythrocytes.

    RESULTS: In the erythrocyte-binding assay, binding level was determined by scoring the number of rosettes that were formed by erythrocytes surrounding transfected mammalian COS-7 cells which expressed PkDBPαII. The assay result revealed a significant difference in the binding level. The number of rosettes scored for Fya+/b+ was 1.64-fold higher than that of Fya+/b- (155.50 ± 34.32 and 94.75 ± 23.16 rosettes, respectively; t(6) = -2.935, P = 0.026).

    CONCLUSIONS: The erythrocyte-binding assay provided a simple approach to quantitatively determine the binding level of PkDBPαII to the erythrocyte Duffy antigen. Using this assay, PkDBPαII was found to display higher binding to Fya+/b+ erythrocytes than to Fya+/b- erythrocytes.

    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/metabolism*
  19. De Silva JR, Lau YL, Fong MY
    PLoS One, 2016;11(7):e0158998.
    PMID: 27391270 DOI: 10.1371/journal.pone.0158998
    Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.
    Matched MeSH terms: Antigens, Protozoan/genetics; Antigens, Protozoan/immunology*; Antigens, Protozoan/chemistry
  20. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006457.
    PMID: 29902183 DOI: 10.1371/journal.pntd.0006457
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease.

    METHODOLOGY/PRINCIPAL FINDINGS: Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses.

    CONCLUSIONS/SIGNIFICANCE: The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.

    Matched MeSH terms: Antigens, Protozoan/blood; Antigens, Protozoan/genetics; Antigens, Protozoan/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links