MATERIALS AND METHODS: We reviewed the clinical notes of all patients prescribed with oral capecitabine chemotherapy for any tumour sites in University Malaya Medical Centre (UMMC) from 1st January 2009 till 31st June 2010. Information collected included patient demographics, histopathological features, treatment received including the different chemotherapy regimens and intent of treatment whether the chemotherapy was given for neoadjuvant, concurrent with radiation, adjuvant or palliative intent. The aim of this study is to establish the pattern of usage, FN and TRD rates with capecitabine in clinical practice outside of clinical trial setting. FN is defined as an oral temperature >38.5°or two consecutive readings of >38.0° for 2 hours and an absolute neutrophil count <0.5 x 109/L, or expected to fall below 0.5 x 109/L (de Naurois et al., 2010). Treatment related death was defined as death occurring during or within 30 days of last chemotherapy treatment.
RESULTS: Between 1st January 2009 and 30th June 2010, 274 patients were treated with capecitabine chemotherapy in UMMC. The mean age was 58 years (range 22 to 82 years). Capecitabine was used in 14 different tumour sites with the colorectal site predominating with a total of 128 cases (46.7%), followed by breast cancer (35.8%). Capecitabine was most commonly used in the palliative setting accounting for 63.9% of the cases, followed by the adjuvant setting (19.7%). The most common regimen was single agent capecitabine with 129 cases (47.1%). The other common regimens were XELOX (21.5%) and ECX (10.2%). The main result of this study showed an overall FN rate of 2.2% (6/274). The overall TRD rate was 5.1% (14/274). The FN rate for the single agent capecitabine regimen was 1.6% (2/129) and the TRD rate was 5.4% (7/129). All the TRDs were with single agent capecitabine regimen were used for palliative intent.
CONCLUSIONS: Oral capecitabine is used widely in clinical practice in a myriad of tumour sites and bears a low risk of febrile neutropaenia. However, capecitabine like any other intravenous chemotherapeutic agent carries a significant risk of treatment related death.
MATERIALS AND METHODS: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment.
RESULTS: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively.
DISCUSSION: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.
METHODS AND RESULTS: We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line.
CONCLUSION: Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.