Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Noh A, Rafii MY, Saleh G, Kushairi A, Latif MA
    ScientificWorldJournal, 2012;2012:792601.
    PMID: 22701095 DOI: 10.1100/2012/792601
    The performance of 11 oil palm AVROS (Algemene Vereniging van Rubberplanters ter Oostkust van Sumatra) pisiferas was evaluated based on their 40 dura x pisifera (DxP) progenies tested on inland soils, predominantly of Serdang Series. Fresh fruit bunch (FFB) yield of each pisiferas ranged from 121.93 to 143.9 kg palm⁻¹ yr⁻¹ with trial mean of 131.62 kg palm⁻¹ yr⁻¹. Analysis of variance (ANOVA) showed low genetic variability among pisifera parents for most of the characters indicating uniformity of the pisifera population. This was anticipated as the AVROS pisiferas were derived from small population and were inbred materials. However, some of the pisiferas have shown good general combining ability (GCA) for certain important economic traits. Three pisiferas (P1 (0.174/247), P3 (0.174/498), P11 (0.182/308)) were identified of having good GCA for FFB yield while pisiferas P1 (0.174/247), P10 (0.182/348), and P11 (0.182/308) were good combiners for oil-to-bunch ratio (O/B). The narrow genetic base of these materials was the main obstacle in breeding and population improvement. However, efforts have been made to introgress this material with the vast oil palm germplasm collections of MPOB for rectifying the problem.
    Matched MeSH terms: Arecaceae/genetics*
  2. Hama-Ali EO, Alwee SS, Tan SG, Panandam JM, Ling HC, Namasivayam P, et al.
    Mol. Biol. Rep., 2015 May;42(5):917-25.
    PMID: 25399079 DOI: 10.1007/s11033-014-3829-7
    Oil palm breeding has been progressing very well in Southeast Asia, especially in Malaysia and Indonesia. Despite this progress, there are still problems due to the difficulty of controlled crossing in oil palm. Contaminated/illegitimate progeny has appeared in some breeding programs; late and failure of detection by the traditional method causes a waste of time and labor. The use of molecular markers improves the integrity of breeding programs in perennial crops such as oil palm. Four half-sib families with a total of 200 progeny were used in this study. Thirty polymorphic single locus DNA microsatellites markers were typed to identify the illegitimate individuals and to obtain the correct parental and progeny assignments by using the CERVUS and COLONY programs. Three illegitimate palms (1.5%) were found, and 16 loci proved to be sufficient for sibship assignments without parental genotypes by using the COLONY program. The pairwise-likelihood score (PLS) method was better for half-sib family assignments than the full likelihood (FL) method.
    Matched MeSH terms: Arecaceae/genetics*
  3. Ithnin M, Teh CK, Ratnam W
    BMC Genet., 2017 04 19;18(1):37.
    PMID: 28420332 DOI: 10.1186/s12863-017-0505-7
    BACKGROUND: The Elaeis oleifera genetic materials were assembled from its center of diversity in South and Central America. These materials are currently being preserved in Malaysia as ex situ living collections. Maintaining such collections is expensive and requires sizable land. Information on the genetic diversity of these collections can help achieve efficient conservation via maintenance of core collection. For this purpose, we have applied fourteen unlinked microsatellite markers to evaluate 532 E. oleifera palms representing 19 populations distributed across Honduras, Costa Rica, Panama and Colombia.

    RESULTS: In general, the genetic diversity decreased from Costa Rica towards the north (Honduras) and south-east (Colombia). Principle coordinate analysis (PCoA) showed a single cluster indicating low divergence among palms. The phylogenetic tree and STRUCTURE analysis revealed clusters based on country of origin, indicating considerable gene flow among populations within countries. Based on the values of the genetic diversity parameters, some genetically diverse populations could be identified. Further, a total of 34 individual palms that collectively captured maximum allelic diversity with reduced redundancy were also identified. High pairwise genetic differentiation (Fst > 0.250) among populations was evident, particularly between the Colombian populations and those from Honduras, Panama and Costa Rica. Crossing selected palms from highly differentiated populations could generate off-springs that retain more genetic diversity.

    CONCLUSION: The results attained are useful for selecting palms and populations for core collection. The selected materials can also be included into crossing scheme to generate offsprings that capture greater genetic diversity for selection gain in the future.

    Matched MeSH terms: Arecaceae/genetics*
  4. Sanusi NSNM, Rosli R, Halim MAA, Chan KL, Nagappan J, Azizi N, et al.
    Database (Oxford), 2018 01 01;2018.
    PMID: 30239681 DOI: 10.1093/database/bay095
    A set of Elaeis guineensis genes had been generated by combining two gene prediction pipelines: Fgenesh++ developed by Softberry and Seqping by the Malaysian Palm Oil Board. PalmXplore was developed to provide a scalable data repository and a user-friendly search engine system to efficiently store, manage and retrieve the oil palm gene sequences and annotations. Information deposited in PalmXplore includes predicted genes, their genomic coordinates, as well as the annotations derived from external databases, such as Pfam, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Information about genes related to important traits, such as those involved in fatty acid biosynthesis (FAB) and disease resistance, is also provided. The system offers Basic Local Alignment Search Tool homology search, where the results can be downloaded or visualized in the oil palm genome browser (MYPalmViewer). PalmXplore is regularly updated offering new features, improvements to genome annotation and new genomic sequences. The system is freely accessible at http://palmxplore.mpob.gov.my.
    Matched MeSH terms: Arecaceae/genetics*
  5. Yaacob JS, Loh HS, Mat Taha R
    ScientificWorldJournal, 2013;2013:613635.
    PMID: 23844406 DOI: 10.1155/2013/613635
    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants.
    Matched MeSH terms: Arecaceae/genetics*
  6. Rafii MY, Jalani BS, Rajanaidu N, Kushairi A, Puteh A, Latif MA
    Genet. Mol. Res., 2012;11(4):3629-41.
    PMID: 23096688 DOI: 10.4238/2012.October.4.10
    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.
    Matched MeSH terms: Arecaceae/genetics
  7. Le VT, Sarpan N, Huynh K, Ooi SE, Napis S, Ho CL, et al.
    Mol. Biotechnol., 2011 Jun;48(2):156-64.
    PMID: 21153717 DOI: 10.1007/s12033-010-9356-4
    In this study, we report the molecular characterization of clone Eg707 isolated from cell suspension culture of the oil palm. The deduced polypeptide of clone Eg707 is highly similar to an unknown protein from Arabidopsis thaliana. The presence of an Ald-Xan-dh-C2 superfamily domain in the deduced protein sequence suggested that Eg707 protein might be involved in abscisic acid biosynthesis. Eg707 might be present as a single copy gene in the oil palm genome. This gene is highly expressed in tissue cultured materials compared to vegetative and reproductive tissues, suggesting a role of this gene during oil palm somatic embryogenesis or at the early stages of embryo development. Expression analysis of Eg707 by RNA in situ hybridization showed that Eg707 transcripts were present throughout somatic embryo development starting from proembryo formation at the embryogenic callus stages till the maturing embryo stages. Since proembryo formation within the embryogenic callus is one of the first key factors in oil palm somatic embryo development, it is suggested that Eg707 could be used as a reliable molecular marker for detecting early stage of oil palm somatic embryogenesis.
    Matched MeSH terms: Arecaceae/genetics
  8. Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Low ET, Ooi LC, et al.
    PLoS ONE, 2014;9(6):e99774.
    PMID: 24927412 DOI: 10.1371/journal.pone.0099774
    The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels.
    Matched MeSH terms: Arecaceae/genetics*
  9. Noh A, Rafii MY, Mohd Din A, Kushairi A, Norziha A, Rajanaidu N, et al.
    Genet. Mol. Res., 2014;13(2):2426-37.
    PMID: 24781997 DOI: 10.4238/2014.April.3.15
    Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection.
    Matched MeSH terms: Arecaceae/genetics*
  10. Teh CK, Muaz SD, Tangaya P, Fong PY, Ong AL, Mayes S, et al.
    Sci Rep, 2017 06 08;7(1):3118.
    PMID: 28596562 DOI: 10.1038/s41598-017-03225-7
    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.
    Matched MeSH terms: Arecaceae/genetics*
  11. Chan KL, Tatarinova TV, Rosli R, Amiruddin N, Azizi N, Halim MAA, et al.
    Biol. Direct, 2017 Sep 08;12(1):21.
    PMID: 28886750 DOI: 10.1186/s13062-017-0191-4
    BACKGROUND: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools.

    RESULTS: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures.

    CONCLUSIONS: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops.

    REVIEWERS: This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.

    Matched MeSH terms: Arecaceae/genetics*
  12. Lau BYC, Othman A, Ramli US
    Protein J., 2018 12;37(6):473-499.
    PMID: 30367348 DOI: 10.1007/s10930-018-9802-x
    Proteomics technologies were first applied in the oil palm research back in 2008. Since proteins are the gene products that are directly correspond to phenotypic traits, proteomic tools hold a strong advantage above other molecular tools to comprehend the biological and molecular mechanisms in the oil palm system. These emerging technologies have been used as non-overlapping tools to link genome-wide transcriptomics and metabolomics-based studies to enhance the oil palm yield and quality through sustainable plant breeding. Many efforts have also been made using the proteomics technologies to address the oil palm's Ganoderma disease; the cause and management. At present, the high-throughput screening technologies are being applied to identify potential biomarkers involved in metabolism and cellular development through determination of protein expression changes that correlate with oil production and disease. This review highlights key elements in proteomics pipeline, challenges and some examples of their implementations in plant studies in the context of oil palm in particular. We foresee that the proteomics technologies will play more significant role to address diverse issues related to the oil palm in the effort to improve the oil crop.
    Matched MeSH terms: Arecaceae/genetics
  13. Gan ST, Wong WC, Wong CK, Soh AC, Kilian A, Low EL, et al.
    J. Appl. Genet., 2018 Feb;59(1):23-34.
    PMID: 29214520 DOI: 10.1007/s13353-017-0420-7
    Oil palm (Elaeis guineensis Jacq.) is an outbreeding perennial tree crop with long breeding cycles, typically 12 years. Molecular marker technologies can greatly improve the breeding efficiency of oil palm. This study reports the first use of the DArTseq platform to genotype two closely related self-pollinated oil palm populations, namely AA0768 and AA0769 with 48 and 58 progeny respectively. Genetic maps were constructed using the DArT and SNP markers generated in combination with anchor SSR markers. Both maps consisted of 16 major independent linkage groups (2n = 2× = 32) with 1399 and 1466 mapped markers for the AA0768 and AA0769 populations, respectively, including the morphological trait "shell-thickness" (Sh). The map lengths were 1873.7 and 1720.6 cM with an average marker density of 1.34 and 1.17 cM, respectively. The integrated map was 1803.1 cM long with 2066 mapped markers and average marker density of 0.87 cM. A total of 82% of the DArTseq marker sequence tags identified a single site in the published genome sequence, suggesting preferential targeting of gene-rich regions by DArTseq markers. Map integration of higher density focused around the Sh region identified closely linked markers to the Sh, with D.15322 marker 0.24 cM away from the morphological trait and 5071 bp from the transcriptional start of the published SHELL gene. Identification of the Sh marker demonstrates the robustness of using the DArTseq platform to generate high density genetic maps of oil palm with good genome coverage. Both genetic maps and integrated maps will be useful for quantitative trait loci analysis of important yield traits as well as potentially assisting the anchoring of genetic maps to genomic sequences.
    Matched MeSH terms: Arecaceae/genetics*
  14. Singh R, Ong-Abdullah M, Low ET, Manaf MA, Rosli R, Nookiah R, et al.
    Nature, 2013 Aug 15;500(7462):335-9.
    PMID: 23883927 DOI: 10.1038/nature12309
    Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.
    Matched MeSH terms: Arecaceae/genetics*
  15. Ting NC, Jansen J, Nagappan J, Ishak Z, Chin CW, Tan SG, et al.
    PLoS ONE, 2013;8(1):e53076.
    PMID: 23382832 DOI: 10.1371/journal.pone.0053076
    Clonal reproduction of oil palm by means of tissue culture is a very inefficient process. Tissue culturability is known to be genotype dependent with some genotypes being more amenable to tissue culture than others. In this study, genetic linkage maps enriched with simple sequence repeat (SSR) markers were developed for dura (ENL48) and pisifera (ML161), the two fruit forms of oil palm, Elaeis guineensis. The SSR markers were mapped onto earlier reported parental maps based on amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers. The new linkage map of ENL48 contains 148 markers (33 AFLPs, 38 RFLPs and 77 SSRs) in 23 linkage groups (LGs), covering a total map length of 798.0 cM. The ML161 map contains 240 markers (50 AFLPs, 71 RFLPs and 119 SSRs) in 24 LGs covering a total of 1,328.1 cM. Using the improved maps, two quantitative trait loci (QTLs) associated with tissue culturability were identified each for callusing rate and embryogenesis rate. A QTL for callogenesis was identified in LGD4b of ENL48 and explained 17.5% of the phenotypic variation. For embryogenesis rate, a QTL was detected on LGP16b in ML161 and explained 20.1% of the variation. This study is the first attempt to identify QTL associated with tissue culture amenity in oil palm which is an important step towards understanding the molecular processes underlying clonal regeneration of oil palm.
    Matched MeSH terms: Arecaceae/genetics
  16. Naher L, Tan SG, Ho CL, Yusuf UK, Ahmad SH, Abdullah F
    ScientificWorldJournal, 2012;2012:647504.
    PMID: 22919345 DOI: 10.1100/2012/647504
    Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both.
    Matched MeSH terms: Arecaceae/genetics*
  17. Zaki NM, Singh R, Rosli R, Ismail I
    Int J Mol Sci, 2012;13(4):4069-88.
    PMID: 22605966 DOI: 10.3390/ijms13044069
    Species-specific simple sequence repeat (SSR) markers are favored for genetic studies and marker-assisted selection (MAS) breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR). Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%), followed by tri-nucleotides (24.2%). Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC) value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626). Low values of observed heterozygosity (H(o)) (0.164) and highly positive fixation indices (F(is)) in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family.
    Matched MeSH terms: Arecaceae/genetics*
  18. Seng TY, Mohamed Saad SH, Chin CW, Ting NC, Harminder Singh RS, Qamaruz Zaman F, et al.
    PLoS ONE, 2011;6(11):e26593.
    PMID: 22069457 DOI: 10.1371/journal.pone.0026593
    Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8-21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8-47 in the former and 12-40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15-57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs.
    Matched MeSH terms: Arecaceae/genetics*
  19. Ariffin N, Abdullah R, Rashdan Muad M, Lourdes J, Emran NA, Ismail MR, et al.
    Plasmid, 2011 Sep;66(3):136-43.
    PMID: 21827784 DOI: 10.1016/j.plasmid.2011.07.002
    Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is a polyhydroxyalkanoate (PHA) bioplastic group with thermoplastic properties is thus high in quality and can be degradable. PHBV can be produced by bacteria, but the process is not economically competitive with polymers produced from petrochemicals. To overcome this problem, research on transgenic plants has been carried out as one of the solutions to produce PHBV in economically sound alternative manner. Four different genes encoded with the enzymes necessary to catalyze PHBV are bktB, phaB, phaC and tdcB. All the genes came with modified CaMV 35S promoters (except for the tdcB gene, which was promoted by the native CaMV 35S promoter), nos terminator sequences and plastid sequences in order to target the genes into the plastids. Subcloning resulted in the generation of two different orientations of the tdcB, pLMIN (left) and pRMIN (right), both 17.557 and 19.967 kb in sizes. Both plasmids were transformed in immature embryos (IE) of oil palm via Agrobacterium tumefaciens. Assays of GUS were performed on one-week-old calli and 90% of the calli turned completely blue. This preliminary test showed positive results of integration. Six-months-old calli were harvested and RNA of the calli were isolated. RT-PCR was used to confirm the transient expression of PHBV transgenes in the calli. The bands were 258, 260, 315 and 200 bp in size for bktB, phaB, phaC and tdcB transgenes respectively. The data obtained showed that the bktB, phaB, phaC and tdcB genes were successfully integrated and expressed in the oil palm genome.
    Matched MeSH terms: Arecaceae/genetics*
  20. Ang CC, Lee SL, Lee CT, Tnah LH, Zakaria RM, Ng CC
    Am. J. Bot., 2011 May;98(5):e117-9.
    PMID: 21613176 DOI: 10.3732/ajb.1000494
    Microsatellite markers were developed for Johannesteijsmannia lanceolata to assess the genetic diversity and mating system of this alarmingly endangered species.
    Matched MeSH terms: Arecaceae/genetics*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links