As part of a screening programme for antibiotic-producing bacteria, a novel Actinomadura species was discovered from a soil sample collected in Santorini, Greece. Preliminary 16S rRNA gene sequence comparisons highlighted Actinomadura macra as the most similar characterised species. However, whole-genome sequencing revealed an average nucleotide identity (ANI) value of 89% with A. macra, the highest among related species. Further phenotypic and chemotaxonomic analyses confirmed that the isolate represents a previously uncharacterised species in the genus Actinomadura, for which the name Actinomadura graeca sp. nov. is proposed (type strain 32-07T). The G+C content of A. graeca 32-07 is 72.36%. The cell wall contains DL-diaminopimelic acid, intracellular sugars are glucose, ribose and galactose, the predominant menaquinone is MK-9(H6), the major cellular lipid is phosphatidylinositol and fatty acids consist mainly of hexadecanoic acid. No mycolic acid was detected. Furthermore, A. graeca 32-07 has been confirmed as a novel producer of the non-ribosomal peptide antibiotic zelkovamycin and we report herein a provisional description of the unique biosynthetic gene cluster.
Streptomyces spp. are bacteria that are responsible for the degradation of aromatic compounds and produce secondary metabolites. Here, we present a complete genome sequence of Streptomyces sp. strain S6, which was isolated from an oil palm plantation, with a 7.8-Mbp liner chromosome, a GC content of 72%, and 4,266 coding sequences.
Here, we report the draft genome sequence of Flavobacterium sp. strain PL002, isolated from Antarctic Porphyra algae. The 4,299,965-bp genome sequence is assembled into 170 contigs, has 32.92% GC content, and 3,734 predicted genes.
The draft genome sequence of Streptomyces fildesensis strain INACH3013, a psychrotrophic bacterium isolated from Northwest Antarctic soil, was reported. The genome sequence totaling 9,306,785 bp resulted from 122 contigs characterized by a GC content of 70.55%.
The data genome sequence of SUK 48 consists of 8,341,706 bp, comprising of one contig with a high G + C content of 72.33%. The genome sequence encodes for 67 tRNAs and 21 rRNAs in one contig. SUK48 was found to have low similarities with other Streptomyces sp. (81-93% ANI indices) indicating that the isolated strain has a unique genome property and is presumably a novel species. This genome includes 34 genetic clusters responsible for the synthesis of secondary metabolites, including two polyketide synthase (PKS) clusters; one PKS type II cluster gene, one PKS gene cluster type III, five NRPS genetic clusters, and five PKS/NRPS hybrid clusters.
Escherichia coli strain USML2 was originally isolated from the inner leaf tissues of surface-sterilized phytopathogenic-free oil palm (Elaeis guineensis Jacq.). We present here the whole-genome sequence of this plant-endophytic strain. The genome consists of a single circular chromosome of 4,502,758 bp, 4,315 predicted coding sequences, and a G+C content of 50.8%.
We describe the characteristics of complete mitogenome of C. brachyotis in this article. The complete mitogenome of C. brachyotis is 16,701 bp long with a total base composition of 32.4% A, 25.7% T, 27.7% C and 14.2% G. The mitogenome consists of 13 protein-coding genes (11,408 bp), (KM659865) two rRNA (12S rRNA and 16S rRNA) genes (2,539 bp), 22 tRNA genes (1518 bp) and one control region (1239 bp).
The Mictyris longicarpus (soldier crab) complete mitochondrial genome sequence is reported making it the first for the family Mictyridae and the second for the superfamily Ocypodoidea. The mitogenome is 15,548 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The soldier crab mitogenome gene order is characteristic of brachyuran crabs with a base composition of 36.58% for T, 19.15% for C, 32.43% for A and 11.83% for G, with an AT bias of 69.01%.
The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
We report the complete genome sequence of Bacillus sp. strain PR5, isolated from a river receiving hospital and urban wastewater in Malaysia, which demonstrated a high capability for degrading prazosin. This genome sequence of 4,525,264 bp exhibited 41.5% GC content, 4,402 coding sequences, and 32 RNAs.
Burkholderia sp. strain USMB20 is a plant growth-promoting rhizobacterium that was isolated from nodules of the leguminous cover crop Mucuna bracteata. The draft genome sequence of Burkholderia sp. strain USMB20 has an assembly size of 7.7 Mbp in 26 contigs with a GC content of 66.88%.
Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences.
Mangrovimonas sp. strain CR14 is a halophilic bacterium affiliated with family Flavobacteriaceae which was successfully isolated from mangrove soil samples obtained from Tanjung Piai National Park, Johor. The whole genome of strain CR14 was sequenced on an Illumina HiSeq 2500 platform (2 × 150 bp paired end). Herein, we report the genome sequence of Mangrovimonas sp. strain CR14 in which its assembled genome consisted 20 contigs with a total size of 3,590,195 bp, 3209 coding sequences, and an average 36.08% G + C content. Genome annotation and gene mining revealed that this bacterium demonstrated proteolytic activity which could be potentially applied in detergent industry. This whole-genome shotgun data of Mangrovimonas sp. strain CR14 has been deposited at DDBJ/ENA/GenBank under the accession JAAFZY000000000. The version described in this paper is version JAAFZY010000000.
The bacterium Oecophyllibacter saccharovorans of family Acetobacteraceae is a symbiont of weaver ant Oecophylla smaragdina. In our previous study, we published the finding of novel O. saccharovorans strains Ha5T, Ta1 and Jb2 (Chua et al. 2020) but their plasmid sequences have not been reported before. Here, we demonstrate for the first time that the sole rrn operon of their genomes was detected on a 6.6 kb circular replicon. This replicon occurred in high copy number, much smaller size and lower G + C content than the main chromosome. Based on these features, the 6.6 kb circular replicon was regarded as rrn operon-containing plasmid. Further restriction analysis on the plasmids confirmed their circular conformation. A Southern hybridization analysis also corroborated the presence of 16S rRNA gene and thus the rrn operon on a single locus in the genome of the O. saccharovorans strains. However, similar genome architecture was not observed in other closely related bacterial strains. Additional survey also detected no plasmid-borne rrn operon in available genomes of validly described taxa of family Acetobacteraceae. To date, plasmid localization of rrn operon is rarely documented. This study reports the occurrence of rrn operon on the smallest bacterial plasmid in three O. saccharovorans strains and discusses its possible importance in enhancing their competitive fitness as bacterial symbiont of O. smaragdina.
The mitochondrial genome sequence of the Australian crayfish, Euastacus yarraensis, is documented and compared with other Australian crayfish genera. Euastacus yarraensis has a mitogenome of 15,548 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The base composition of E. yarraensis mitogenome is 32.39% for T, 22.45% for C, 34.43% for A, and 10.73% for G, with an AT bias of 66.82%. The mitogenome gene order conforms to what is considered the primitive arrangement for parastacid crayfish.
The complete mitochondrial genome of the enigmatic freshwater crayfish Engaeus lyelli was sequenced using the MiSeq Personal Sequencer (Illumina, San Diego, CA). The mitogenome has 16,027 bp consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of E. lyelli is 29.01% for T, 27.13% for C, 31.43% for A, and 12.44% for G, with an AT bias of 60.44%. The species has the distinctive gene order characteristic of parastacid crayfish with the exception of some minor rearrangements involving the tRNA genes.
UV-VIS spectroscopic analysis of oligonucleotide DNA exposed to different magnetic fields was performed in order to investigate the relationship between DNA extinction coefficients and optical parameters according to magnetic-field strength. The results with the oligonucleotides adenine-thymine 100 mer (AT-100 DNA) and cytosine-guanine 100 mer (CG-100 DNA) indicate that the magnetic field influences DNA molar extinction coefficients and refractive indexes. The imaginary parts of the refractive index and molar extinction coefficients of the AT-100 and CG-100 DNA decreased after exposure to a magnetic field of 750 mT due to cleavage of the DNA oligonucleotides into smaller segments.
Here we report the complete mitochondrial genome of the Bornean banteng Bos javanicus lowi (Cetartiodactyla, Bovidae), which was determined using next-generation sequencing. The mitochondrial genome is 16,344 bp in length containing 13 protein-coding genes, 21 tRNAs and 2 rRNAs. It shows the typical pattern of bovine mitochondrial arrangement. Phylogenetic tree analysis of complete mtDNA sequences showed that Bornean banteng is more closely related to gaur than to other banteng subspecies. Divergence dating indicated that Bornean banteng and gaur diverged from their common ancestor approximately 5.03 million years ago. These results suggest that Bornean banteng might be a distinct species in need of conservation.
Codon usage bias (CUB) is the unequal usage of synonymous codons of an amino acid in which some codons are used more often than others and is widely used in understanding molecular biology, genetics, and functional regulation of gene expression. Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal disease in both humans and animals. NiV was first identified during an outbreak of a disease in Malaysia in 1998 and then occurred periodically since 2001 in India, Bangladesh, and the Philippines. We used bioinformatics tools to analyze the codon usage patterns in a genome-wide manner among 11 genomes of NiV as no work was reported yet. The compositional properties revealed that the overall GC and AT contents were 41.96 and 58.04%, respectively i.e. Nipah virus genes were AT-rich. Correlation analysis between overall nucleotide composition and its 3rd codon position suggested that both mutation pressure and natural selection might influence the CUB across Nipah genomes. Neutrality plot revealed natural selection might have played a major role while mutation pressure had a minor role in shaping the codon usage bias in NiV genomes.
The complete mitochondrial genome sequence of Atergatis integerrimus from China has been amplified and sequenced in this study. The mitogenome assembly was found to be 15,924 bp in length with base composition of A (32.88%), G (10.58%), C (20.87%), T (35.66%), A + T (68.54%), and G + C (31.46%). It contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a control region. The phylogenetic position was constructed and the A. integerrimus was closely clustered with Pseudocarcinus gigas and Leptodius sanguineus. The complete mitochondrial genome sequence would be useful for further understanding the evolution of A. integerrimus.