Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Liao TZ, Chen YH, Tsai JN, Chao C, Huang TP, Hong CF, et al.
    Plant Dis, 2023 Jul;107(7):2039-2053.
    PMID: 36428260 DOI: 10.1094/PDIS-06-22-1285-RE
    Brown root rot disease (BRRD), caused by Phellinus noxius, is an important tree disease in tropical and subtropical areas. To improve chemical control of BRRD and deter emergence of fungicide resistance in P. noxius, this study investigated control efficacies and systemic activities of fungicides with different modes of action. Fourteen fungicides with 11 different modes of action were tested for inhibitory effects in vitro on 39 P. noxius isolates from Taiwan, Hong Kong, Malaysia, Australia, and Pacific Islands. Cyproconazole, epoxiconazole, and tebuconazole (Fungicide Resistance Action Committee [FRAC] 3, target-site G1) inhibited colony growth of P. noxius by 99.9 to 100% at 10 ppm and 97.7 to 99.8% at 1 ppm. The other effective fungicide was cyprodinil + fludioxonil (FRAC 9 + 12, target-site D1 + E2), which showed growth inhibition of 96.9% at 10 ppm and 88.6% at 1 ppm. Acropetal translocation of six selected fungicides was evaluated in bishop wood (Bischofia javanica) seedlings by immersion of the root tips in each fungicide at 100 ppm, followed by liquid or gas chromatography tandem mass spectrometry analyses of consecutive segments of root, stem, and leaf tissues at 7 and 21 days posttreatment. Bidirectional translocation of the fungicides was also evaluated by stem injection of fungicide stock solutions. Cyproconazole and tebuconazole were the most readily absorbed by roots and efficiently transported acropetally. Greenhouse experiments suggested that cyproconazole, tebuconazole, and epoxiconazole have a slightly higher potential for controlling BRRD than mepronil, prochloraz, and cyprodinil + fludioxonil. Because all tested fungicides lacked basipetal translocation, soil drenching should be considered instead of trunk injection for their use in BRRD control.
    Matched MeSH terms: Basidiomycota*
  2. Maphatsoe MM, Hashem C, Ling JG, Horvat M, Rumbold K, Bakar FDA, et al.
    J Biotechnol, 2022 Feb 10;345:47-54.
    PMID: 34954290 DOI: 10.1016/j.jbiotec.2021.12.010
    Carboxylic acid reductases (CARs) are well-known for their eminent selective one-step synthesis of carboxylic acids to aldehydes. To date, however, few CARs have been identified and characterized, especially from fungal sources. In this study, the CAR from the white rot fungus Pycnoporus cinnabarinus (PcCAR2) was expressed in Escherichia coli. PcCAR2's biochemical properties were explored in vitro after purification, revealing a melting temperature of 53 °C, while the reaction temperature optimum was at 35 °C. In the tested buffers, the enzyme showed a pH optimum of 6.0 and notably, a similar activity up to pH 7.5. PcCAR2 was immobilized to explore its potential as a recyclable biocatalyst. PcCAR2 showed no critical loss of activity after six cycles, with an average conversion to benzaldehyde of more than 85% per cycle. Immobilization yield and efficiency were 82% and 76%, respectively, on Ni-sepharose. Overall, our findings contribute to the characterization of a thermotolerant fungal CAR, and established a more sustainable use of the valuable biocatalyst.
    Matched MeSH terms: Basidiomycota*
  3. Kerfahi D, Tripathi BM, Lee J, Edwards DP, Adams JM
    PLoS One, 2014;9(11):e111525.
    PMID: 25405609 DOI: 10.1371/journal.pone.0111525
    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.
    Matched MeSH terms: Basidiomycota/isolation & purification*; Basidiomycota/physiology
  4. Desjardin DE, Peay KG, Bruns TD
    Mycologia, 2011 Sep-Oct;103(5):1119-23.
    PMID: 21558499 DOI: 10.3852/10-433
    A gasteroid bolete collected recently in Sarawak on the island of Borneo is described as the new species Spongiforma squarepantsii. A comprehensive description, illustrations, phylogenetic placement and a comparison with a closely allied species are provided.
    Matched MeSH terms: Basidiomycota/classification*; Basidiomycota/cytology; Basidiomycota/genetics*; Basidiomycota/isolation & purification
  5. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: Basidiomycota/genetics; Basidiomycota/chemistry*
  6. Lang G, Mitova MI, Cole AL, Din LB, Vikineswary S, Abdullah N, et al.
    J Nat Prod, 2006 Oct;69(10):1389-93.
    PMID: 17067148
    Six new linear peptides, pterulamides I-VI (1-6), were isolated from the fruiting bodies of a Malaysian Pterula species. The structures were elucidated by MS and 2D NMR experiments, and the absolute configurations of the constituent amino acids established using Marfey's method. The pterulamides are mainly assembled from nonpolar N-methylated amino acids and, most interestingly, have non-amino-acid N-terminal groups, among them the unusual cinnamoyl, (E)-3-methylsulfinylpropenoyl, and (E)-3-methylthiopropenoyl groups. Furthermore, pterulamides I-V are the first natural peptides with a methylamide C-terminus. Pterulamides I and IV are cytotoxic against the P388 cell line with IC50 values of 0.55 and 0.95 microg/mL (0.79 and 1.33 microM), respectively.
    Matched MeSH terms: Basidiomycota/chemistry*
  7. Bharudin I, Abu Bakar MF, Hashim NHF, Mat Isa MN, Alias H, Firdaus-Raih M, et al.
    Mar Environ Res, 2018 Jun;137:169-176.
    PMID: 29598997 DOI: 10.1016/j.marenvres.2018.03.007
    Glaciozyma antarctica PI12, is a psychrophilic yeast isolated from Antarctic sea. In this work, Expressed Sequence Tags (EST) from cells exposed to three different temperatures; 15 °C, 0 °C and -12 °C were generated to identify genes associated with cold adaptation. A total of 5376 clones from each library were randomly picked and sequenced. Comparative analyses from the resulting ESTs in each condition identified several groups of genes required for cold adaptation. Additionally, 319 unique transcripts that encoded uncharacterised functions were identified in the -12 °C library and are currently unique to G. antarctica. Gene expression analysis using RT-qPCR revealed two of the unknown genes to be up-regulated at -12 °C compared to 0 °C and 15 °C. These findings further contribute to the collective knowledge into G. antarctica cold adaptation and as a resource for understanding the ecological and physiological tolerance of psychrophilic microbes in general.
    Matched MeSH terms: Basidiomycota/physiology*
  8. Wan Mohtar WHM, Wan-Mohtar WAAQI, Zahuri AA, Ibrahim MF, Show PL, Ilham Z, et al.
    Bioengineered, 2022;13(7-12):14903-14935.
    PMID: 37105672 DOI: 10.1080/21655979.2023.2184785
    Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.
    Matched MeSH terms: Basidiomycota*
  9. Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, et al.
    Plant Biotechnol J, 2021 Feb;19(2):273-284.
    PMID: 32744350 DOI: 10.1111/pbi.13460
    In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
    Matched MeSH terms: Basidiomycota*
  10. Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM
    Cell Stress Chaperones, 2019 Mar;24(2):351-368.
    PMID: 30649671 DOI: 10.1007/s12192-019-00969-1
    Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
    Matched MeSH terms: Basidiomycota/metabolism*
  11. Foong PM, Abedi Karjiban R, Normi YM, Salleh AB, Abdul Rahman MB
    Metallomics, 2015 Jan;7(1):156-64.
    PMID: 25412156 DOI: 10.1039/c4mt00163j
    Metal ions are one of the essential elements which are extensively involved in many cellular activities. With rapid advancements in genome sequencing techniques, bioinformatics approaches have provided a promising way to extract functional information of a protein directly from its primary structure. Recent findings have suggested that the metal content of an organism can be predicted from its complete genome sequences. Characterizing the biological metal usage of cold-adapted organisms may help to outline a comprehensive understanding of the metal-partnerships between the psychrophile and its adjacent environment. The focus of this study is targeted towards the analysis of the metal composition of a psychrophilic yeast Glaciozyma antarctica PI12 isolated from sea ice of Antarctica. Since the cellular metal content of an organism is usually reflected in the expressed metal-binding proteins, the putative metal-binding sequences from G. antarctica PI12 were identified with respect to their sequence homologies, domain compositions, protein families and cellular distribution. Most of the analyses revealed that the proteome was enriched with zinc, and the content of metal decreased in the order of Zn > Fe > Mg > Mn, Ca > Cu. Upon comparison, it was found that the metal compositions among yeasts were almost identical. These observations suggested that G. antarctica PI12 could have inherited a conserved trend of metal usage similar to modern eukaryotes, despite its geographically isolated habitat.
    Matched MeSH terms: Basidiomycota/isolation & purification; Basidiomycota/metabolism*; Basidiomycota/chemistry*
  12. Parvizpour S, Razmara J, Ramli AN, Md Illias R, Shamsir MS
    J Comput Aided Mol Des, 2014 Jun;28(6):685-98.
    PMID: 24849507 DOI: 10.1007/s10822-014-9751-1
    The structure of a novel psychrophilic β-mannanase enzyme from Glaciozyma antarctica PI12 yeast has been modelled and analysed in detail. To our knowledge, this is the first attempt to model a psychrophilic β-mannanase from yeast. To this end, a 3D structure of the enzyme was first predicted using a threading method because of the low sequence identity (<30%) using MODELLER9v12 and simulated using GROMACS at varying low temperatures for structure refinement. Comparisons with mesophilic and thermophilic mannanases revealed that the psychrophilic mannanase contains longer loops and shorter helices, increases in the number of aromatic and hydrophobic residues, reductions in the number of hydrogen bonds and salt bridges and numerous amino acid substitutions on the surface that increased the flexibility and its efficiency for catalytic reactions at low temperatures.
    Matched MeSH terms: Basidiomycota/enzymology*; Basidiomycota/physiology; Basidiomycota/chemistry
  13. Subramaniam R, Siddiquee S, Aguol KA, Hoque MZ, Kumar SV
    Data Brief, 2019 Apr;23:103796.
    PMID: 31372442 DOI: 10.1016/j.dib.2019.103796
    Members of the genus Tinctoporellus, which belong to the wood-degrading basidiomycetes, possess the ability to synthesize an array of industrially potent enzymes and metabolites. Here, we present the draft genome sequence of the species Tinctoporellus epimiltinus strain RS1, which is the first to represent its genus. The genome was sequenced using Illumina's 2 × 150 bp paired-end Nextera protocol. The draft genome assembly was 46.2 Mb in size consisting of 13,791 protein coding genes. Identification of carbohydrate active enzymes and laccases from the data may be useful in order to harness the metabolic potentials of the fungi. The data can be accessed at ENA under the accession number FTLJ00000000.
    Matched MeSH terms: Basidiomycota
  14. Séne S, Selosse MA, Forget M, Lambourdière J, Cissé K, Diédhiou AG, et al.
    ISME J, 2018 06;12(7):1806-1816.
    PMID: 29535364 DOI: 10.1038/s41396-018-0088-y
    Global trade increases plant introductions, but joint introduction of associated microbes is overlooked. We analyzed the ectomycorrhizal fungi of a Caribbean beach tree, seagrape (Coccoloba uvifera, Polygonacaeae), introduced pantropically to stabilize coastal soils and produce edible fruits. Seagrape displays a limited symbiont diversity in the Caribbean. In five regions of introduction (Brazil, Japan, Malaysia, Réunion and Senegal), molecular barcoding showed that seagrape mostly or exclusively associates with Scleroderma species (Basidiomycota) that were hitherto only known from Caribbean seagrape stands. An unknown Scleroderma species dominates in Brazil, Japan and Malaysia, while Scleroderma bermudense exclusively occurs in Réunion and Senegal. Population genetics analysis of S. bermudense did not detect any demographic bottleneck associated with a possible founder effect, but fungal populations from regions where seagrape is introduced are little differentiated from the Caribbean ones, separated by thousands of kilometers, consistently with relatively recent introduction. Moreover, dry seagrape fruits carry Scleroderma spores, probably because, when drying on beach sand, they aggregate spores from the spore bank accumulated by semi-hypogeous Scleroderma sporocarps. Aggregated spores inoculate seedlings, and their abundance may limit the founder effect after seagrape introduction. This rare pseudo-vertical transmission of mycorrhizal fungi likely contributed to efficient and repeated seagrape/Scleroderma co-introductions.
    Matched MeSH terms: Basidiomycota/classification; Basidiomycota/genetics; Basidiomycota/isolation & purification; Basidiomycota/physiology*
  15. Kuan CS, Yew SM, Toh YF, Chan CL, Lim SK, Lee KW, et al.
    PLoS One, 2015;10(12):e0145932.
    PMID: 26716988 DOI: 10.1371/journal.pone.0145932
    Peritonitis is the leading complication of peritoneal dialysis, which is primarily caused by bacteria rather than fungi. Peritonitis is responsible for approximately 18% of the infection-related mortality in peritoneal dialysis patients. In this paper, we report the isolation of a rare fungus, Quambalaria cyanescens, from the peritoneal fluid of a man after he switched from continuous ambulatory peritoneal dialysis to nocturnal intermittent peritoneal dialysis. Based on the morphological examination and multigene phylogeny, the clinical isolate was confirmed as Q. cyanescens. This pathogen exhibited low sensitivity to all tested echinocandins and 5-flucytosine. Interestingly, morphological characterization revealed that Q. cyanescens UM 1095 produced different pigments at low temperatures (25°C and 30°C) on various culture media. It is important to monitor the emergence of this rare fungus as a potential human pathogen in the tropics. This study provides insight into Q. cyanescens UM 1095 phenotype profiles using a Biolog phenotypic microarray (PM). Of the 760 nutrient sources tested, Q. cyanescens UM 1095 utilized 42 compounds, and the fungus can adapt to a broad range of osmotic and acidic environments. To our knowledge, this is the first report of the isolation of Q. cyanescens from peritoneal fluid, revealing this rare fungus as a potential human pathogen that may be misidentified using conventional methods. The detailed morphological, molecular and phenotypic characterization of Q. cyanescens UM 1095 provides the basis for future studies on its biology, lifestyle, and potential pathogenicity.
    Matched MeSH terms: Basidiomycota/classification; Basidiomycota/isolation & purification*; Basidiomycota/pathogenicity*
  16. Lee KK, Kassim AM, Lee HK
    Water Sci Technol, 2004;50(5):73-7.
    PMID: 15497832
    White-rot fungi, namely Coriolus versicolor and Schizophyllum commune, were studied for the biodecolorization of textile dyeing effluent in shaker-flask experiments. The results showed that C. versicolor was able to achieve 68% color removal after 5 days of treatment while that of S. commune was 88% in 9 days. Both fungi achieved the above results in non-sterile condition with diammonium hydrogen phosphate as the nutrient supplement. On the other hand, the best COD removal of 80% was obtained with C. versicolor in 9 days in sterile effluent with yeast extract as nutrient supplement, while S. commune was able to remove 85% COD within 8 days in non-sterile textile effluent supplemented with diammonium hydrogen phosphate.
    Matched MeSH terms: Basidiomycota/drug effects*; Basidiomycota/growth & development; Basidiomycota/metabolism
  17. Jaafar NR, Mahadi NM, Mackeen MM, Illias RM, Murad AMA, Abu Bakar FD
    J Biotechnol, 2021 Mar 10;329:118-127.
    PMID: 33539893 DOI: 10.1016/j.jbiotec.2021.01.019
    Dehydroquinase or 3-dehydroquinate dehydratase (DHQD) reversibly cleaves 3-dehydroquinate to form 3-dehydroshikimate. Here, we describe the functional and structural features of a cold active type II 3-dehydroquinate dehydratase from the psychrophilic yeast, Glaciozyma antarctica PI12 (GaDHQD). Functional studies showed that the enzyme was active at low temperatures (10-30 °C), but displayed maximal activity at 40 °C. Yet the enzyme was stable over a wide range of temperatures (10-70 °C) and between pH 6.0-10.0 with an optimum pH of 8.0. Interestingly, the enzyme was highly thermo-tolerant, denaturing only at approximately 84 °C. Three-dimensional structure analyses showed that the G. antarctica dehydroquinase (GaDHQD) possesses psychrophilic features in comparison with its mesophilic and thermophilic counterparts such as higher numbers of non-polar residues on the surface, lower numbers of arginine and higher numbers of glycine-residues with lower numbers of hydrophobic interactions. On the other hand, GaDHQD shares some traits (i.e. total number of hydrogen bonds, number of proline residues and overall folding) with its mesophilic and thermophilic counterparts. Combined, these features contribute synergistically towards the enzyme's ability to function at both low and high temperatures.
    Matched MeSH terms: Basidiomycota
  18. Mohd Rosli Haron, Mohd Farid Ahmad, Lee, Su See, Norwati Muhammad
    MyJurnal
    Two isolates of brown root disease fungi were obtained from diseased roots of sentang (Azadirachta excelsa). Morphological characters from macroscopic and microscopic studies suggested that both isolates were from the same genus namely Phellinus noxius and Phellinus sp. Cloning and sequencing of ITS region were conducted to investigate further the variation between the two species at
    molecular level. PCR-amplified ITS regions were cloned in pCR2.1 and sequenced. DNA sequences sized 723bp and 710bp were obtained for Phellinus noxius and Phellinus sp respectively. Comparison between the two sequences showed 98% similarity where three nucleotide substitutions and three insertion/deletion regions were found sized 8bp, 2bp and 3bp respectively.
    Matched MeSH terms: Basidiomycota
  19. Naim MA, Smidt H, Sipkema D
    PeerJ, 2017;5:e3722.
    PMID: 28894639 DOI: 10.7717/peerj.3722
    Fungi and other eukaryotes represent one of the last frontiers of microbial diversity in the sponge holobiont. In this study we employed pyrosequencing of 18S ribosomal RNA gene amplicons containing the V7 and V8 hypervariable regions to explore the fungal diversity of seven sponge species from the North Sea and the Mediterranean Sea. For most sponges, fungi were present at a low relative abundance averaging 0.75% of the 18S rRNA gene reads. In total, 44 fungal OTUs (operational taxonomic units) were detected in sponges, and 28 of these OTUs were also found in seawater. Twenty-two of the sponge-associated OTUs were identified as yeasts (mainly Malasseziales), representing 84% of the fungal reads. Several OTUs were related to fungal sequences previously retrieved from other sponges, but all OTUs were also related to fungi from other biological sources, such as seawater, sediments, lakes and anaerobic digesters. Therefore our data, supported by currently available data, point in the direction of mostly accidental presence of fungi in sponges and do not support the existence of a sponge-specific fungal community.
    Matched MeSH terms: Basidiomycota
  20. Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM
    J Mol Model, 2015 Mar;21(3):63.
    PMID: 25721655 DOI: 10.1007/s00894-015-2617-1
    Here, we present a novel psychrophilic β-glucanase from Glaciozyma antarctica PI12 yeast that has been structurally modeled and analyzed in detail. To our knowledge, this is the first attempt to model a psychrophilic laminarinase from yeast. Because of the low sequence identity (<40%), a threading method was applied to predict a 3D structure of the enzyme using the MODELLER9v12 program. The results of a comparative study using other mesophilic, thermophilic, and hyperthermophilic laminarinases indicated several amino acid substitutions on the surface of psychrophilic laminarinase that totally increased the flexibility of its structure for efficient catalytic reactions at low temperatures. Whereas several structural factors in the overall structure can explain the weak thermal stability, this research suggests that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through existence of longer loops and shorter or broken helices and strands, an increase in the number of aromatic and hydrophobic residues, a reduction in the number of hydrogen bonds and salt bridges, a higher total solvent accessible surface area, and an increase in the exposure of the hydrophobic side chains to the solvent. The results of comparative molecular dynamics simulation and principal component analysis confirmed the above strategies adopted by psychrophilic laminarinase to increase its catalytic efficiency and structural flexibility to be active at cold temperature.
    Matched MeSH terms: Basidiomycota/enzymology*; Basidiomycota/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links