Displaying all 14 publications

Abstract:
Sort:
  1. Kuan BB, Lim TK
    Med J Malaysia, 1984 Dec;39(4):280-4.
    PMID: 6544933
    Ultrasound measurement of ocular dimension is the chosen method for assessing axial length when determining dioptric power for intraocular lens. From the current results of 30 cases studied, the mean axial length ranges from 22 to 23 mm. Despite the limitation of the accuracy of the ultrasonic measurements with the 7.5 mHz transducer, the power of intraocular lens can. be determined satisfactorily in accordance with the knowledge of keratometric reading. Hence, high refractive errors could be avoided post-operatively.
    Matched MeSH terms: Biometry/methods
  2. Wong JY, Chu C, Chong VC, Dhillon SK, Loh KH
    J Fish Biol, 2016 Aug;89(2):1324-44.
    PMID: 27364089 DOI: 10.1111/jfb.13039
    Combined multiple 2D views (proximal, anterior and ventral aspects) of the sagittal otolith are proposed here as a method to capture shape information for fish classification. Classification performance of single view compared with combined 2D views show improved classification accuracy of the latter, for nine species of Sciaenidae. The effects of shape description methods (shape indices, Procrustes analysis and elliptical Fourier analysis) on classification performance were evaluated. Procrustes analysis and elliptical Fourier analysis perform better than shape indices when single view is considered, but all perform equally well with combined views. A generic content-based image retrieval (CBIR) system that ranks dissimilarity (Procrustes distance) of otolith images was built to search query images without the need for detailed information of side (left or right), aspect (proximal or distal) and direction (positive or negative) of the otolith. Methods for the development of this automated classification system are discussed.
    Matched MeSH terms: Biometry/methods*
  3. Naik VR, Jaafar H, Seng CE
    Indian J Pathol Microbiol, 2010 Jan-Mar;53(1):12-4.
    PMID: 20090214 DOI: 10.4103/0377-4929.59175
    The purpose of this study was to count the number of lymphatic channels present in colorectal adenocarcinoma and correlate it with site, size, and stage of tumor, lymph node metastasis.
    Matched MeSH terms: Biometry/methods
  4. Simoneau G, Levis B, Cuijpers P, Ioannidis JPA, Patten SB, Shrier I, et al.
    Biom J, 2017 Nov;59(6):1317-1338.
    PMID: 28692782 DOI: 10.1002/bimj.201600184
    Individual patient data (IPD) meta-analyses are increasingly common in the literature. In the context of estimating the diagnostic accuracy of ordinal or semi-continuous scale tests, sensitivity and specificity are often reported for a given threshold or a small set of thresholds, and a meta-analysis is conducted via a bivariate approach to account for their correlation. When IPD are available, sensitivity and specificity can be pooled for every possible threshold. Our objective was to compare the bivariate approach, which can be applied separately at every threshold, to two multivariate methods: the ordinal multivariate random-effects model and the Poisson correlated gamma-frailty model. Our comparison was empirical, using IPD from 13 studies that evaluated the diagnostic accuracy of the 9-item Patient Health Questionnaire depression screening tool, and included simulations. The empirical comparison showed that the implementation of the two multivariate methods is more laborious in terms of computational time and sensitivity to user-supplied values compared to the bivariate approach. Simulations showed that ignoring the within-study correlation of sensitivity and specificity across thresholds did not worsen inferences with the bivariate approach compared to the Poisson model. The ordinal approach was not suitable for simulations because the model was highly sensitive to user-supplied starting values. We tentatively recommend the bivariate approach rather than more complex multivariate methods for IPD diagnostic accuracy meta-analyses of ordinal scale tests, although the limited type of diagnostic data considered in the simulation study restricts the generalization of our findings.
    Matched MeSH terms: Biometry/methods*
  5. Mohsin AH, Zaidan AA, Zaidan BB, Ariffin SAB, Albahri OS, Albahri AS, et al.
    J Med Syst, 2018 Oct 29;42(12):245.
    PMID: 30374820 DOI: 10.1007/s10916-018-1103-6
    In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013-2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.
    Matched MeSH terms: Biometry/methods*
  6. Naicker P, Sundralingam S, Peyman M, Juana A, Mohamad NF, Win MM, et al.
    Int Ophthalmol, 2015 Aug;35(4):459-66.
    PMID: 25024102 DOI: 10.1007/s10792-014-9970-4
    To determine the accuracy of intraocular lens (IOL) calculations in eyes undergoing phacoemulsification cataract surgery with IOL implantation using immersion A-scan ultrasound (US) and Lenstar LS 900(®) biometry. In this prospective study, 200 eyes of 200 patients were randomized to undergo either Lenstar LS 900(®) or immersion A-scan US biometry to determine the IOL dioptric power prior to phacoemulsification cataract surgery. Post-operative refractive outcomes of these two groups of patients were compared. The result showed no significant difference between the target spherical equivalent (SE) and the post-operative SE value by the Lenstar LS 900(®) (p value = 0.632) or immersion A-scan US biometry (p value = 0.438) devices. The magnitude of difference between the two biometric devices were not significantly different (p value = 0.868). There was no significant difference in the predicted post-operative refractive outcome between immersion A-scan US biometry and Lenstar LS 900(®). Based on the results, the immersion A-scan US technique is as accurate as Lenstar LS 900(®) in the hands of an experienced operator.
    Matched MeSH terms: Biometry/methods*
  7. Zahari M, Ong YM, Taharin R, Ramli N
    Optom Vis Sci, 2014 Apr;91(4):459-63.
    PMID: 24637481 DOI: 10.1097/OPX.0000000000000220
    To evaluate ocular biometric parameters and darkroom prone provocative test (DPPT) in family members of primary angle closure (PAC) glaucoma (PACG) patients and to establish any correlation between these biometric parameters and the DPPT response.
    Matched MeSH terms: Biometry/methods
  8. Ghanizadeh A, Abarghouei AA, Sinaie S, Saad P, Shamsuddin SM
    Appl Opt, 2011 Jul 1;50(19):3191-200.
    PMID: 21743518 DOI: 10.1364/AO.50.003191
    Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.
    Matched MeSH terms: Biometry/methods*
  9. Teoh AB, Goh A, Ngo DC
    IEEE Trans Pattern Anal Mach Intell, 2006 Dec;28(12):1892-901.
    PMID: 17108365
    Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.
    Matched MeSH terms: Biometry/methods*
  10. Harighi MF, Wahid H, Thomson PC, Rafii MY, Jesse FFA
    Anim. Reprod. Sci., 2019 Sep;208:106113.
    PMID: 31405472 DOI: 10.1016/j.anireprosci.2019.106113
    Testicular volume (TV) is one of the most important traits used in evaluation of the reproductive capacity of male animals. The levelled-container used in the present study was found to be reliable instrument to measure TV, based on a water displacement method. Sperm-associated antigen 11 (SPAG11) is an important gene that affects male reproductive performance. An objective of the present study, therefore, was to determine if single nucleotide polymorphisms (SNPs) in a fragment of the SPAG11 gene could be used to determine associations with values of testicular biometric variables in Boer goats. Primers were designed to amplify the full length of the first two exons of SPAG11. The targeted fragment was generated using a molecular cloning technique. As the result, four SNPs, [g.1256A > G(ss19199134542), g.1270C > T(ss19199134541), g.1325A > G(ss19199134540) and g.1327 G > A (ss19199134543)], were detected using a single-base extension (SBE) method. Two of these SNPs were synonymous (ss19199134540 and ss19199134542). The other two SNPs were nonsynonymous, thus, there were changes in amino acid in the resulting protein: threonine to isoleucine (for ss19199134541) and arginine to glutamine (for ss19199134543). The SNP ss19199134543 was the only locus detected that was associated with TV (P = 0.002). None of the testes dimensions nor TW were associated with detected SPAG11 gene SNPs. Most likely, the ss19199134543 locus affects tissue structures adjacent to the testes, causing the change in TV. In conclusion, among the studied testicular biometric variables, TV had the greatest potential for preselecting of bucks with desirable semen quality. The use of the levelled-container as a TV measurement approach was an accurate and reliable method.
    Matched MeSH terms: Biometry/methods*
  11. Loh CC, Kamaruddin H, Bastion MC, Husain R, Mohd Isa H, Md Din N
    Ophthalmic Res, 2021;64(2):246-252.
    PMID: 32810853 DOI: 10.1159/000510925
    INTRODUCTION: The aim of the study was to evaluate the refractive status and ocular biometric parameters in subjects with angle closure in Malaysia.

    METHODS: This cross-sectional study was conducted on 171 primary angle closure patients (268 eyes). Visual acuity, refraction, and ocular biometry (central anterior chamber depth [ACD], axial length [AL], and lens thickness) were recorded. Vitreous cavity length (VL) and relative lens position (RLP) were calculated.

    RESULTS: A total of 92 Primary Angle Closure Suspect (PACS), 30 Primary Angle Closure (PAC), and 146 Primary Angle Closure Glaucoma (PACG) eyes were included. Chinese ethnicity formed the majority (n = 197, 73.5%), followed by Malay (n = 57, 21.3%) and Indian (n = 14, 5.2%). There was a significant female preponderance with a female to male ratio of 1.85. Mean age was 65.7 ± 7.7 years. Mean spherical equivalent was +0.33 ± 1.29 D. Approximately half (n = 137, 51%) of the eyes were hyperopic (spherical power ≥+0.5), with PACG having the highest percentage of hyperopia (n = 69, 50.4%). Myopia and emmetropia were present in 48 (17.9) and 83 (31%) eyes, respectively. Although AL and VL in myopia patients were significantly longer than emmetropic and hyperopic eyes (p < 0.001), the ACD was not significantly different (p = 0.427). While the RLP is smaller in myopic eyes, lens thickness was increased in hyperopic eyes. PACG was significantly higher in elderly patients compared to PACS and PAC (p = 0.005). A total of 37 (13.8%) eyes were blind (vision worse than 3/60) and 19 of them (51.3%) were female patients.

    CONCLUSION: A decrease in RLP is predictive of angle closure disease in myopic eyes, whereas increased lens thickness contributes to angle closure disease in hyperopic eyes.

    Matched MeSH terms: Biometry/methods*
  12. Mohsin AH, Zaidan AA, Zaidan BB, Albahri AS, Albahri OS, Alsalem MA, et al.
    J Med Syst, 2018 Oct 16;42(12):238.
    PMID: 30327939 DOI: 10.1007/s10916-018-1104-5
    The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
    Matched MeSH terms: Biometry/methods*
  13. Suraida AR, Ibrahim M, Zunaina E
    PLoS One, 2018;13(1):e0191134.
    PMID: 29324896 DOI: 10.1371/journal.pone.0191134
    OBJECTIVES: To compare the anterior ocular segment biometry among Type 2 diabetes mellitus (DM) with no diabetic retinopathy (DR) and non-proliferative diabetic retinopathy (NPDR), and to evaluate the correlation of anterior ocular segment biometry with HbA1c level.

    METHODS: A cross-sectional study was conducted in Hospital Universiti Sains Malaysia, Kelantan from November 2013 till May 2016 among Type 2 DM patients (DM with no DR and DM with NPDR). The patients were evaluated for anterior ocular segment biometry [central corneal thickness (CCT), anterior chamber width (ACW), angle opening distance (AOD) and anterior chamber angle (ACA)] by using Anterior Segment Optical Coherence Tomography (AS-OCT). Three ml venous blood was taken for the measurement of HbA1c.

    RESULTS: A total of 150 patients were included in this study (DM with no DR: 50 patients, DM with NPDR: 50 patients, non DM: 50 patients as a control group). The mean CCT and ACW showed significant difference among the three groups (p < 0.001 and p = 0.015 respectively). Based on post hoc result, there were significant mean difference of CCT between non DM and DM with NPDR (mean difference 36.14 μm, p < 0.001) and also between non DM and DM with no DR (mean difference 31.48 μm, p = 0.003). The ACW was significantly narrower in DM with NPDR (11.39 mm SD 0.62) compared to DM with no DR (11.76 mm SD 0.53) (p = 0.012). There were no significant correlation between HbA1c and all the anterior ocular segment biometry.

    CONCLUSION: Diabetic patients have significantly thicker CCT regardless of retinopathy status whereas ACW was significantly narrower in DM with NPDR group compared to DM with no DR. There was no significant correlations between HbA1c and all anterior ocular segment biometry in diabetic patients regardless of DR status.

    Matched MeSH terms: Biometry/methods*
  14. Kamel NS, Sayeed S, Ellis GA
    IEEE Trans Pattern Anal Mach Intell, 2008 Jun;30(6):1109-13.
    PMID: 18421114 DOI: 10.1109/TPAMI.2008.32
    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
    Matched MeSH terms: Biometry/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links