Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Shukur MH
    Med J Malaysia, 2005 Jul;60 Suppl C:1-2.
    PMID: 16381272
    Matched MeSH terms: Bone Substitutes*
  2. Hanna R, Dalvi S, Amaroli A, De Angelis N, Benedicenti S
    J Biophotonics, 2021 01;14(1):e202000267.
    PMID: 32857463 DOI: 10.1002/jbio.202000267
    A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to "PRISMA." The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.
    Matched MeSH terms: Bone Substitutes*
  3. Hoque ME, Zainal NH, Syarif J
    Med J Malaysia, 2008 Jul;63 Suppl A:91-2.
    PMID: 19024999
    This study aims at investigating the mechanical properties of the contemporary metallic bone plates determining the effect of their length, width and thickness on the properties and compares with the composite bone plates. Three-points bending test was performed over the stainless steel plates of different length, width and thickness. The test results showed that different plates had different mechanical properties. However, the properties are still much higher than that of particular bones intended to be treated. Therefore, the reported findings strongly encourage developing composite bone plates with biocompatible polymers/fibers that would have modulated properties according to the requirements.
    Matched MeSH terms: Bone Substitutes*
  4. Bajuri MY, Selvanathan N, Dzeidee Schaff FN, Abdul Suki MH, Ng AMH
    Tissue Eng Regen Med, 2021 06;18(3):377-385.
    PMID: 34043210 DOI: 10.1007/s13770-021-00343-2
    BACKGROUND: Managing massive bone defects, a great challenge to orthopaedics reconstructive surgery. The problem arise is the supply of suitable bone is limited with many complications. Tissue-engineered hydroxyapatite bone (TEHB) scaffold impregnated with osteoprogenitor cells developed as an alternative to promote bone regeneration.

    METHODS: This animal protocol has been approved by Universiti Kebangsaan Malaysia Animal Ethical Committee. The TEHB scaffold prepared from hydroxyapatite using gel casting method. A total of six adolescent female sheep were chosen for this study. Later, all the sheep were euthanized in a proper manner and the bone harvested for biomechanical study. Bone marrow was collected from iliac crest of the sheep and bone marrow stem cells (BMSCs) isolated and cultured. BMSCs then cultured in osteogenic medium for osteoprogenitor cells development and the plasma collected was seeded with osteoprogenitor cells mixed with calcium chloride. Bone defect of 3 cm length of tibia bone created from each sheep leg and implanted with autologous and TEHB scaffold in 2 different groups of sheep. Wound site was monitored weekly until the wound completely healed and conventional X-ray performed at week 1 and 24. Shear test was conducted to determine the shear force on the autologous bone and TEHB scaffold after implantation for 24 weeks.

    RESULTS: All of the sheep survived without any complications during the study period and radiograph showed new bone formation. Later, the bone harvested was for biomechanical study. The highest shear force for the autologous group was 13 MPa and the lowest was 5 MPa while for the scaffold group, the highest was 10 MPa and the lowest was 3 MPa. Although, proximal and distal interface of autologous bone graft shows higher shear strength compared to the TEHB scaffold but there is no significant difference in both groups, p value > 0.05. Histologically in both proximal and distal interface in both arms shows bone healing and woven bone formation.

    CONCLUSION: TEHB scaffold impregnated with osteoprogenitor cells has the potential to be developed as a bone substitute in view of its strength and capability to promote bone regeneration.

    Matched MeSH terms: Bone Substitutes*
  5. Chai, W.L.
    Ann Dent, 2009;16(1):24-30.
    MyJurnal
    This systematic review focuses on the management of two types of osseous defects, i.e. dehiscence and fenestration that arise during the placement of dental implant in the edentulous area (delayed implant placement). A systematic online search of main database from 1975 to 2009 was made. Five randomised controlled trials have been identified based on the inclusion criteria. Different management procedures were identified, in which guided bone regeneration procedure was most commonly advocated. Resorbable and non-resorbable m'embranes were compared, in which resorbable membrane was preferred as it caused less complicatiQn of membrane exposure or risk of infection. The benefit of using bone substitute along with membrane in rypairing bony defects cannot be concluded.
    Matched MeSH terms: Bone Substitutes
  6. Ataollahi Oshkour A, Pramanik S, Shirazi SF, Mehrali M, Yau YH, Abu Osman NA
    ScientificWorldJournal, 2014;2014:616804.
    PMID: 25538954 DOI: 10.1155/2014/616804
    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
    Matched MeSH terms: Bone Substitutes/chemistry*
  7. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA
    Tissue Eng Part B Rev, 2013 Oct;19(5):431-41.
    PMID: 23557483 DOI: 10.1089/ten.TEB.2012.0624
    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.
    Matched MeSH terms: Bone Substitutes/chemistry*
  8. Hazmi AJ, Zuki AB, Noordin MM, Jalila A, Norimah Y
    Med J Malaysia, 2008 Jul;63 Suppl A:93-4.
    PMID: 19025000
    This study was conducted based on the hypothesis that mineral and physicochemical properties of cockle shells similarly resemble the properties of corals (Porites sp.). Hence, the mineral and physicochemical evaluations of cockle shells were conducted to support the aforementioned hypothesis. The results indicated that cockle shells and coral exoskeleton shared similar mineral and physicochemical properties.
    Matched MeSH terms: Bone Substitutes/chemistry*
  9. Sopyan I, Rosli A, Raihana MF
    Med J Malaysia, 2008 Jul;63 Suppl A:81-2.
    PMID: 19024994
    A novel hydrothermal process has been developed various hydroxyapatite(HA) powder. The HA powder was investigated in different calcination temperatures over the range of 200 degrees C-800 degrees C. TG/DTA and XRD analysis revealed that at temperatures of 700-800 degrees C the decomposition processes and phase changes took place. It is due to the appearance of TCP phase substituting the HA phase. FESEM observation showed that the produced hydroxyapatite powder was extraordinarily fine with nanosize primary particles and almost evenly spherical in shaped. Its high purity proved that the powder fulfills medical requirement.
    Matched MeSH terms: Bone Substitutes/chemistry
  10. Dewo P, Sharma PK, van der Tas HF, van der Houwen EB, Timmer M, Magetsari R, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:21-2.
    PMID: 19024964
    The enormous need of orthopaedic (surgical) implants such as osteosynthesis plates is difficult to be fulfilled in developing countries commonly rely on imported ones. One of the alternatives is utilization of local resources, but only after they have been proven safe to use, to overcome this problem. Surface properties are some of the determining factors of safety for those implants. We have succeeded in developing prototype of osteosynthesis plate and the results indicate that Indonesian-made plates need improvement with regards to the surface quality of physical characterization.
    Matched MeSH terms: Bone Substitutes*
  11. Tan KK, Tan GH, Shamsul BS, Chua KH, Ng MHA, Ruszymah BHI, et al.
    Med J Malaysia, 2005 Jul;60 Suppl C:53-8.
    PMID: 16381285
    Spinal fusion using autologous bone graft is performed in an increasing rate for many spinal disorders. However, graft harvesting procedure is associated with prolonged operation time and potential donor site morbidity. We produced an engineered 'bone graft' substitute by using porous hydroxyapatite (HA) scaffold seeded with autologous bone marrow osteoprogenitor cells (OPCs) and fibrin. This obviates bone graft harvesting, thus eliminates donor site morbidity and shortens the operation time. The aim of this study is to evaluate Hydroxyapatite (HA) ceramics as scaffold for autologous tissue engineered bone construct for spinal fusion in a sheep model. The sheep's marrow was aspirated from iliac crest. The bone marrow mesenchymal stem cells (BMMSCs) were cultured for several passages in the presence of growth and differentiation factors to increase the number of OPCs. After the cultures reached confluence, they were trypsinized and seeded on Hydroxyapatite scaffold (HA). Approximately 5 million cells were generated after 3 weeks of culture. Microscopically, very tight Colony Forming Units (CFU-Fs) were seen on monolayer culture. The Von Kossa and Alizarin Red staining of monolayer culture showed positive mineralization areas; indicating the presence of OPCs. Sheep underwent a posterolateral spinal fusion in which scaffolds with or without OPCs seeded were implanted on both sides of the lumbar spine (L1-L2). Intended fusion segments were immobilized using wires. At the end of third month, the fusion constructs were harvested for histological examination. Fibrous tissue infiltration found in the inter-connecting pores of plain HA ceramics indicates inefficient new bone regeneration. New bone was found surrounding the HA ceramics seeded with autologous cells. The new bone is probably formed by the sheep BMMSCs that were initially encapsulating HA while it remained intact. The new bone is naturally fused with the vertebrae. In conclusion, the incorporation of autologous bone marrow cells improved the effectiveness of HA ceramics as 'bone graft' substitute for spinal fusion.
    Matched MeSH terms: Bone Substitutes*
  12. Best SM, Patel N, Porter AE, Bonfield W
    Med J Malaysia, 2004 May;59 Suppl B:129-30.
    PMID: 15468852
    Bone is unique in its ability to adapt structure to functional requirements, but as is all too obvious in an ever-ageing population it is susceptible to a number of degenerative diseases. Therefore there is an increasing need for materials for bone replacement. Clearly, the ideal material with which to replace bone, would be bone itself, but the major problem now facing us is that there is an insufficient supply of the natural bone to satisfy the clinical requirements. Hence, there is a need for the development of chemically synthesised bone graft substitutes
    Matched MeSH terms: Bone Substitutes*
  13. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Al-Salihi KA, Norimah Y, et al.
    Med J Malaysia, 2004 May;59 Suppl B:127-8.
    PMID: 15468851
    The study was carried out with the aim to evaluate natural coral (Porites spp.) implanted in sheep femur microscopically. Twelve adult, male sheep were used in this study. The defect area was implanted with coral and monitored for up to 12 weeks. The sheep were euthanased at 2,4,8, and 12 weeks post-implantation. Microscopically, natural coral implanted into bone tissue have shown gradual resorption and progressively replaced by new bone. At 12 weeks post-implantation, the implanted site was almost completely surrounded by mature bone. The results showed that natural coral was found to be a biodegradable and osteo-conductive biomaterial, which acted as a scaffold for a direct osteoblastic apposition.
    Matched MeSH terms: Bone Substitutes*
  14. Abdul Razak NH, Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:119-20.
    PMID: 15468847
    Defects were created in the mandible of a rabbit model whereby the right side was implanted with hydroxyapatite (HA) while the left side was left empty to act as control. Both the implant and control sites were evaluated clinically and histologically at 4,12,20,22 weeks. Decalcified sections were studied under confocal laser scanning microscope. No reactive cells were evident microscopically in all sections. There was bone ingrowth as early as 4 weeks when viewed by the topographic method. Enhancement of osteoconduction was evident by the presence of abundant capillaries, perivascular tissue and osteoprogenitor cells of the host. At 22 weeks, the implanted defect showed mature bone formation filling almost the whole field. This study demonstrated that the dense HA exhibits excellent biocompatibility as noted by the complete absence of reactive cells. It also promotes osteoconduction.
    Matched MeSH terms: Bone Substitutes*
  15. Kannan TP, Nik Ahmad Shah NL, Azlina A, Samsudin AR, Narazah MY, Salleh M
    Med J Malaysia, 2004 May;59 Suppl B:115-6.
    PMID: 15468845
    This study evaluates the cytotoxic and mutagenic effect of synthetic hydroxyapatite granules (source: School of Material and Mineral Resources Engineering, Universiti Sains Malaysia) in the bone marrow cells of mice. Mice are exposed to synthetic hydroxyapatite granules, the bone marrow cells are collected and observed for chromosome aberrations. No chromosome aberrations were noticed in the animals exposed to distilled water (negative control) and to the test substance, synthetic hydroxyapatite granules (treatment) groups. Chromosome aberrations were observed in the animals exposed to Mitomycin C (positive control group). There was no indication of cytotoxicity due to synthetic hydroxyapatite granules in the animals as revealed by the mitotic index. Hence, synthetic hydroxyapatite granules are considered non-mutagenic under the prevailing test conditions.
    Matched MeSH terms: Bone Substitutes/toxicity*
  16. Saidu MF, Mashita M, Khadijah K, Fazan F, Khalid KA
    Med J Malaysia, 2004 May;59 Suppl B:85-6.
    PMID: 15468831
    Hydroxyapatite is a calcium phosphate bioceramic that has been shown by many authors to be biocompatible with bioactive properties. It is widely accepted as the best synthetic material available for surgical use as a bone graft substitute. HA granules produced by AMREC-SIRIM from local materials underwent 5 types of sterilisation techniques with different ageing periods. Samples were tested for chemical and phase composition and microbial contamination before and after being sterilised. From the microbiological tests done, none of the unsterilised positive control yielded a positive culture. Results from X-Ray diffraction studies found that all the sterilisation techniques did not chemically degrade or structurally change the HA granules significantly.
    Matched MeSH terms: Bone Substitutes/analysis*
  17. Mohd. Reusmaazran Yusof, Roslinda Shamsudin, Syafiq Baharuddin, Idris Besar
    Sains Malaysiana, 2008;37:233-237.
    Porous hydroxyapatite (HAp) as a bone graft substitute was produced via gas technique with three different concentrations of hydrogen peroxide (H2O2) namely 20, 30 and 50%. Hydroxyapatite(HA) slurries with different concentration were produced by mixing between H2O2 solutions and HA powder (L/P) with different ratio i.e. 0.9 to 2.20 ml.g-1. Different L/P ratio and H2O2 concentration affected the porosity, interconnectivity and compressive strength of HAp sample. Changes in L/P ratio between 0.9 to 2.20 ml.g-1, increases the porosity around 50 - 65% at 20% H2O2 concentration. Porosity increases with the L/P values and H2O2 concentration which 76% of porosity was obtained at 50% H2O2 and 2.20 mlg-1 of L/P. The compressive strength of HAp is in the range of 0.5 to 2.15 MPa and is found decreasing with the increasing of L/P values.
    Matched MeSH terms: Bone Substitutes
  18. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA
    PLoS One, 2014;9(9):e108252.
    PMID: 25233468 DOI: 10.1371/journal.pone.0108252
    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.
    Matched MeSH terms: Bone Substitutes/standards; Bone Substitutes/chemistry*
  19. Tan CY, Ramesh S, Aw KL, Yeo WH, Hamdi M, Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:87-8.
    PMID: 19024997
    The sintering behaviour of synthesized HA powder that was calcined at various temperatures ranging from 700 degrees C to 1000 degrees C was investigated in terms of phase stability, bulk density, Young's modulus and Vickers hardness. The calcination treatment resulted in higher crystallinity of the starting HA powder. Decomposition of HA phase to form secondary phases was not observed in all the calcined powders. The results also indicated that powder calcination (up to 900 degrees C) prior to sintering has negligible effect on the sinterability of the HA compacts. However, powder calcined at 1000 degrees C was found to be detrimental to the properties of sintered hydroxyapatite bioceramics.
    Matched MeSH terms: Bone Substitutes/chemical synthesis; Bone Substitutes/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links