Displaying all 19 publications

Abstract:
Sort:
  1. Maslizan M, Haris MS, Ajat M, Md Jamil SNA, Azhar SC, Zahid NI, et al.
    Chem Phys Lipids, 2024 May;260:105377.
    PMID: 38325712 DOI: 10.1016/j.chemphyslip.2024.105377
    Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.
    Matched MeSH terms: Atorvastatin Calcium/chemistry
  2. Mohamad Esham MI, Ahmad AL, Othman MHD, Adam MR
    J Environ Manage, 2024 May;358:120894.
    PMID: 38643621 DOI: 10.1016/j.jenvman.2024.120894
    Discharging improperly treated oily-produced water (OPW) into the environment can have significant negative impacts on environmental sustainability. It can lead to pollution of water sources, damage to aquatic ecosystems and potential health hazards for individuals living in the affected areas. Ceramic hollow fiber membrane (CHFM) technology is one of the most effective OPW treatment methods for achieving high oil removal efficiency while maintaining membrane water permeability. In this study, low-cost calcium bentonite hollow fiber membranes (CaB-HFMs) were prepared from high-alumina calcium bentonite clay with various preparation parameters, including calcium bentonite content, sintering temperature, air gap distance and bore fluid rate. The prepared CaB-HFMs were then subjected to characterization using scanning electron microscopy (SEM), a three-point bending test, porosity, average pore size, hydraulic resistance and flux recovery ratio (FRR) analysis. Statistical analysis employing central composite design (CCD) assessed the interaction between the parameters and their effect on CaB-HFM water permeability and oil removal efficiency. Higher ceramic content and sintering temperature led to reduced porosity, smaller pore size and higher mechanical strength. In contrast, increasing the air gap distance and bore fluid rate exhibit different trends, resulting in higher porosity and pore size, along with weaker mechanical strength. Other than that, all of the CaB-HFMs displayed low hydraulic resistance (<0.01 m2 h.bar/L) and high FRR value (up to 95.2%). Based on CCD, optimal conditions for CaB-HFM were determined as follows: a calcium bentonite content of 50 wt.%, a sintering temperature of 1096 °C, an air gap distance of 5 cm and a bore fluid rate of 10 mL/min, with the desirability value of 0.937. Notably, the optimized CaB-HFMs demonstrated high oil removal efficiency of up to 99.7% with exceptional water permeability up to 535.2 L/m2.h.bar. The long-term permeation study also revealed it was capable of achieving a high average water permeation and a stable oil rejection performance of 522.15 L/m2.h.bar and 99.8%, respectively, due to their inherent hydrophilic and antifouling characteristics, making it practical for OPW treatment application.
    Matched MeSH terms: Calcium/chemistry
  3. Rahman MM, Abdullah RB, Wan Khadijah WE
    J Anim Physiol Anim Nutr (Berl), 2013 Aug;97(4):605-14.
    PMID: 22548678 DOI: 10.1111/j.1439-0396.2012.01309.x
    Published data on oxalate poisoning in domestic animals are reviewed, with a focus on tolerance and performance. Oxalic acid is one of a number of anti-nutrients found in forage. It can bind with dietary calcium (Ca) or magnesium (Mg) to form insoluble Ca or Mg oxalate, which then may lead to low serum Ca or Mg levels as well as to renal failure because of precipitation of these salts in the kidneys. Dietary oxalate plays an important role in the formation of Ca oxalate, and a high dietary intake of Ca may decrease oxalate absorption and its subsequent urinary excretion. Oxalate-rich plants can be supplemented with other plants as forage for domestic animals, which may help to reduce the overall intake of oxalate-rich plants. Non-ruminants appear to be more sensitive to oxalate than ruminants because in the latter, rumen bacteria help to degrade oxalate. If ruminants are slowly exposed to a diet high in oxalate, the population of oxalate-degrading bacteria in the rumen increases sufficiently to prevent oxalate poisoning. However, if large quantities of oxalate-rich plants are eaten, the rumen is overwhelmed and unable to metabolize the oxalate and oxalate-poisoning results. Based on published data, we consider that <2.0% soluble oxalate would be an appropriate level to avoid oxalate poisoning in ruminants, although blood Ca level may decrease. In the case of non-ruminants, <0.5% soluble oxalate may be acceptable. However, these proposed safe levels of soluble oxalate should be regarded as preliminary. Further studies, especially long-term studies, are needed to validate and improve the recommended safe levels in animals. This review will encourage further research on the relationships between dietary oxalate, other dietary factors and renal failure in domestic animals.
    Matched MeSH terms: Calcium/chemistry
  4. Abd Rahman RN, Shariff FM, Basri M, Salleh AB
    Int J Mol Sci, 2012;13(7):9207-17.
    PMID: 22942761 DOI: 10.3390/ijms13079207
    The crystallization of proteins makes it possible to determine their structure by X-ray crystallography, and is therefore important for the analysis of protein structure-function relationships. L2 lipase was crystallized by using the J-tube counter diffusion method. A crystallization consisting of 20% PEG 6000, 50 mM MES pH 6.5 and 50 mM NaCl was found to be the best condition to produce crystals with good shape and size (0.5 × 0.1 × 0.2 mm). The protein concentration used for the crystallization was 3 mg/mL. L2 lipase crystal has two crystal forms, Shape 1 and Shape 2. Shape 2 L2 lipase crystal was diffracted at 1.5 Å and the crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 72.0, b = 81.8, c = 83.4 Å, α = β = γ = 90°. There is one molecule per asymmetric unit and the solvent content of the crystals is 56.9%, with a Matthew's coefficient of 2.85 Å Da(-1). The 3D structure of L2 lipase revealed topological organization of α/β-hydrolase fold consisting of 11 β-strands and 13 α-helices. Ser-113, His-358 and Asp-317 were assigned as catalytic triad residues. One Ca(2+) and one Zn(2+) were found in the L2 lipase molecule.
    Matched MeSH terms: Calcium/chemistry*
  5. Tan CY, Rahman RN, Kadir HA, Tayyab S
    Acta Biochim. Pol., 2011;58(3):405-12.
    PMID: 21887412
    Bacillus licheniformis α-amylase (BLA) was chemically modified using 100-fold molar excess of succinic anhydride over protein or 0.66 M potassium cyanate to obtain 42 % succinylated and 81 % carbamylated BLAs. Size and charge homogeneity of modified preparations was established by Sephacryl S-200 HR gel chromatography and polyacrylamide gel electrophoresis. Conformational alteration in these preparations was evident by the larger Stokes radii (3.40 nm for carbamylated and 3.34 nm for succinylated BLAs) compared to 2.43 nm obtained for native BLA. Urea denaturation results using mean residue ellipticity (MRE) as a probe also showed conformational destabilization based on the early start of transition as well as ΔG(D)(H(2)O) values obtained for both modified derivatives and Ca-depleted BLA. Decrease in ΔG(D)(H(2)O) value from 5,930 cal/mol (for native BLA) to 3,957 cal/mol (for succinylated BLA), 3,336 cal/mol (for carbamylated BLA) and 3,430 cal/mol for Ca-depleted BLA suggested reduced conformational stability upon modification of amino groups of BLA or depletion of calcium. Since both succinylation and carbamylation reactions abolish the positive charge on amino groups (both α- and ε- amino), the decrease in conformational stability can be ascribed to the disruption of salt bridges present in the protein which might have released the intrinsic calcium from its binding site.
    Matched MeSH terms: Calcium/chemistry
  6. Yusof AM, Malek NA, Kamaruzaman NA, Adil M
    Environ Technol, 2010 Jan;31(1):41-6.
    PMID: 20232677 DOI: 10.1080/09593330903313794
    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).
    Matched MeSH terms: Calcium/chemistry
  7. Vakhrusheva T, Panasenko O
    Chem Phys Lipids, 2006 Apr;140(1-2):18-27.
    PMID: 16458872
    In this work, we studied whether chondroitin sulfates and dextran sulfates (DXSs) can influence hypochlorite-induced peroxidation of phosphatidylcholine (PC) liposomes. Multilamellar liposomes (2 mg lipid/ml) were prepared in phosphate buffer, pH 7.4, with NaCl or not and exposed to reagent HOCl/ClO- (1mM) at 37 degrees C in the presence of different concentrations of chondroitin 6-sulfate (C6S), chondroitin 4-sulfate (C4S), DXS 8000, DXS 40,000, and DXS 500,000. Lipid peroxidation was assessed by thiobarbituric acid-reactive substance (TBARS) production. DXSs and C6S enhanced TBARS production in a dose-dependent manner. The decline in TBARS production at the relatively high C6S concentrations may be attributed to C4S present in C6S, since in contrast to C6S, C4S is known to react with hypochlorite. Dextrans, nonsulfated analogues of DXS, failed to modulate TBARS production. This fact indicates the important role of negatively charged sulfate groups for DXS to facilitate hypochlorite-induced peroxidation of PC liposomes. The electrostatic nature of the mechanism providing for the pro-oxidative effect of DXS was also supported by the influence of liposome surface charge and solution ionic strength on the extent of liposome peroxidation. The addition of calcium ions to the incubation mixture did not prevent the pro-oxidative action of DXS. The relevance of the results to atherogenesis is discussed.
    Matched MeSH terms: Calcium/chemistry
  8. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal Biochem, 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
    Matched MeSH terms: Calcium/chemistry
  9. Chai KP, Othman NF, Teh AH, Ho KL, Chan KG, Shamsir MS, et al.
    Sci Rep, 2016 Mar 15;6:23126.
    PMID: 26975884 DOI: 10.1038/srep23126
    A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca(2+) ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca(2+) ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite.
    Matched MeSH terms: Calcium/chemistry
  10. Kumar M, Tamilarasan R, Arthanareeswaran G, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:164-73.
    PMID: 25913699 DOI: 10.1016/j.ecoenv.2015.04.007
    Recently noted that the methylene blue cause severe central nervous system toxicity. It is essential to optimize the methylene blue from aqueous environment. In this study, a comparison of an optimization of methylene blue was investigated by using modified Ca(2+) and Zn(2+) bio-polymer hydrogel beads. A batch mode study was conducted using various parameters like time, dye concentration, bio-polymer dose, pH and process temperature. The isotherms, kinetics, diffusion and thermodynamic studies were performed for feasibility of the optimization process. Freundlich and Langmuir isotherm equations were used for the prediction of isotherm parameters and correlated with dimensionless separation factor (RL). Pseudo-first order and pseudo-second order Lagegren's kinetic equations were used for the correlation of kinetic parameters. Intraparticle diffusion model was employed for diffusion of the optimization process. The Fourier Transform Infrared Spectroscopy (FTIR) shows different absorbent peaks of Ca(2+) and Zn(2+) beads and the morphology of the bio-polymer material analyzed with Scanning Electron Microscope (SEM). The TG & DTA studies show that good thermal stability with less humidity without production of any non-degraded products.
    Matched MeSH terms: Calcium/chemistry*
  11. Tan X, Zhu S, Show PL, Qi H, Ho SH
    J Hazard Mater, 2020 07 05;393:122435.
    PMID: 32151933 DOI: 10.1016/j.jhazmat.2020.122435
    Biochar (BC) has attracted much attention owing to its superior sorption capacity towards ionized organic contaminants. However, the mechanism of ionized organics sorption occurring within BC containing large amounts of minerals is still controversial. In this study, we demonstrate the physicochemical structure of high-salinity microalgal residue derived biochar (HSBC) and elucidate the corresponding sorption mechanisms for four ionized dyes along with determining the crucial role of involved minerals. The results indicate that sodium and calcium minerals mainly exist within HSBCs, and the pyrolysis temperature can dramatically regulate the phases and interfacial property of both carbon matrix and minerals. As a result, the HSBC shows a higher sorption potential, benefiting from abundant functional groups and high content of inorganic minerals. Using theoretical calculations, the activities of electron donor-acceptor interaction between HSBCs and different dyes are clearly illustrated, thereby identifying the critical role of Ca2+ in enhancing the removal of ionized dyes in HSBCs. In addition, Ca-containing minerals facilitate the sorption of ionized dyes in HSBCs by forming ternary complexes through metal-bridging mechanism. These results of mineral-induced dye sorption mechanisms help to better understand the sorption of ionized organics in high-salt containing BC and provide a new disposal strategy for hazardous microalgal residue, as well as provide a breakthrough in making the remediation of ionized organic contaminated microalgal residue derived absorbent feasible.
    Matched MeSH terms: Calcium/chemistry
  12. Hasnain MS, Nayak AK, Singh M, Tabish M, Ansari MT, Ara TJ
    Int J Biol Macromol, 2016 Feb;83:71-7.
    PMID: 26608007 DOI: 10.1016/j.ijbiomac.2015.11.044
    Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release were developed through incorporation of nano-hydroxyapatite [nHAp] powders within ionotropically-gelled calcium ion-induced alginate-poly (vinyl pyrrolidone) blends polymeric systems. nHAp powders were synthesized by precipitation technique using calcium hydroxide [Ca(OH)2] and orthophosphoric acid [H3PO4] as raw materials. The average particle size of these was synthesized. nHAp powders was found as 19.04 nm and used to prepare nHAp-alginate-PVP beads containing DS. These beads exhibited drug entrapment efficiency (%) of 65.82±1.88 to 94.45±3.72% and average bead sizes of 0.98±0.07 to 1.23±0.15 mm. These beads were characterized by scanning electron microscopy (SEM) and Fourier transform-infra red (FTIR) spectroscopy analyses. Various nHAp-alginate-PVP beads containing DS exhibited prolonged sustained drug release and followed the Koresmeyer-Peppas model of drug release (R2=0.9908-0.9978) with non-Fickian release (anomalous transport) mechanism (n=0.73-0.84) for drug release over 8 h.
    Matched MeSH terms: Calcium/chemistry
  13. Adzmi F, Meon S, Musa MH, Yusuf NA
    J Microencapsul, 2012;29(3):205-10.
    PMID: 22309479 DOI: 10.3109/02652048.2012.659286
    Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p 
    Matched MeSH terms: Calcium/chemistry
  14. Sulong MR, Abdul Rahman RN, Salleh AB, Basri M
    Protein Expr Purif, 2006 Oct;49(2):190-5.
    PMID: 16769222
    An organic solvent tolerant (OST) lipase gene from Bacillus sphaericus 205y was successfully expressed extracellularly. The expressed lipase was purified using two steps purification; ultrafiltration and hydrophobic interaction chromatography (HIC) to 8-fold purity and 32% recovery. The purified 205y lipase revealed homogeneity on denaturing gel electrophoresis and the molecular mass was at approximately 30 kDa. The optimum pH for the purified 205y lipase was 7.0-8.0 and its stability showed a broad range of pH value between pH 5.0 to 13.0 at 37 degrees C. The purified 205y lipase exhibited an optimum temperature of 55 degrees C. The activity of the purified lipase was stimulated in the presence of Ca2+ and Mg2+. Ethylenediaminetetraacetic acid (EDTA) has no effect on its activity; however inhibition was observed with phenylmethane sulfonoyl fluoride (PMSF) a serine hydrolase inhibitor. Organic solvents such as dimethylsulfoxide (DMSO), methanol, p-xylene and n-decane enhanced the activity. Studies on the effect of oil showed that the lipase was most active in the presence of tricaprin (C10). The lipase exhibited 1,3 positional specificity.
    Matched MeSH terms: Calcium/chemistry
  15. Hamdi OA, Anouar el H, Shilpi JA, Trabolsy ZB, Zain SB, Zakaria NS, et al.
    Int J Mol Sci, 2015 Apr 27;16(5):9450-68.
    PMID: 25923077 DOI: 10.3390/ijms16059450
    A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay.
    Matched MeSH terms: Calcium/chemistry
  16. Sabri S, Rahman RN, Leow TC, Basri M, Salleh AB
    Protein Expr Purif, 2009 Dec;68(2):161-6.
    PMID: 19679187 DOI: 10.1016/j.pep.2009.08.002
    Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae alpha-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 degrees C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C(10)-C(16)), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.
    Matched MeSH terms: Calcium/chemistry
  17. Bonsu KO, Owusu IK, Buabeng KO, Reidpath DD, Kadirvelu A
    J Am Heart Assoc, 2017 Apr 01;6(4).
    PMID: 28365564 DOI: 10.1161/JAHA.116.004706
    BACKGROUND: Randomized control trials of statins have not demonstrated significant benefits in outcomes of heart failure (HF). However, randomized control trials may not always be generalizable. The aim was to determine whether statin and statin type-lipophilic or -hydrophilic improve long-term outcomes in Africans with HF.

    METHODS AND RESULTS: This was a retrospective longitudinal study of HF patients aged ≥18 years hospitalized at a tertiary healthcare center between January 1, 2009 and December 31, 2013 in Ghana. Patients were eligible if they were discharged from first admission for HF (index admission) and followed up to time of all-cause, cardiovascular, and HF mortality or end of study. Multivariable time-dependent Cox model and inverse-probability-of-treatment weighting of marginal structural model were used to estimate associations between statin treatment and outcomes. Adjusted hazard ratios were also estimated for lipophilic and hydrophilic statin compared with no statin use. The study included 1488 patients (mean age 60.3±14.2 years) with 9306 person-years of observation. Using the time-dependent Cox model, the 5-year adjusted hazard ratios with 95% CI for statin treatment on all-cause, cardiovascular, and HF mortality were 0.68 (0.55-0.83), 0.67 (0.54-0.82), and 0.63 (0.51-0.79), respectively. Use of inverse-probability-of-treatment weighting resulted in estimates of 0.79 (0.65-0.96), 0.77 (0.63-0.96), and 0.77 (0.61-0.95) for statin treatment on all-cause, cardiovascular, and HF mortality, respectively, compared with no statin use.

    CONCLUSIONS: Among Africans with HF, statin treatment was associated with significant reduction in mortality.

    Matched MeSH terms: Rosuvastatin Calcium/chemistry; Atorvastatin Calcium/chemistry
  18. Ramli AN, Azhar MA, Shamsir MS, Rabu A, Murad AM, Mahadi NM, et al.
    J Mol Model, 2013 Aug;19(8):3369-83.
    PMID: 23686283 DOI: 10.1007/s00894-013-1861-5
    A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template-the thermostable α-amylase from Bacillus stearothermophilus (BSTA)-the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.
    Matched MeSH terms: Calcium/chemistry
  19. Shafiu Kamba A, Zakaria ZA
    Biomed Res Int, 2014;2014:215097.
    PMID: 24734228 DOI: 10.1155/2014/215097
    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process.
    Matched MeSH terms: Calcium/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links