Displaying all 15 publications

Abstract:
Sort:
  1. Teh LK, Zilfalil BA, Marina I, Rosemi BS, Ismail R
    J Clin Pharm Ther, 2004 Dec;29(6):559-64.
    PMID: 15584944 DOI: 10.1111/j.1365-2710.2004.00600.x
    BACKGROUND: Cardiovascular diseases are complex diseases that are influenced by both environmental and genetic factors. CYP2D6 found in the brain and the heart is involved in the metabolism of many environmental and some endogenous substances and neurotransmitters responsible for maintaining homeostasis. This raises an interesting hypothesis that it may have a role in the development of or protection against cardiovascular diseases.
    OBJECTIVE: To study the distribution of genotypes of CYP2D6 among patients with cardiovascular diseases in Malaysia.
    METHOD:We obtained DNA from 128 patients who were followed up for cardiovascular diseases. Polymerase chain reaction-based methods were used to determine common CYP2D6 alleles.
    RESULTS: One hundred and twenty-eight patients were enrolled. Most of the patients also had concurrent illnesses. Eleven genotypes were identified in the patients and 41% carried CYP2D6*1/*10. The second most common genotype was homozygous for the wild type gene, followed by homozygous CYP2D6*10/*10 at 14.48 %. A small percentage of the patients were heterozygous CYP2D6*1/*4. One patient was genotyped homozygous CYP2D6*4/*4 predicting a poor metabolizer prevalence of 0.78% (95% CI +/- 1.52%). Analysis using Hardy-Weinberg equilibrium showed that all of the gnotypes were consistent with equilibrium except for CYP2D6*1/*10 (chi(2); P < 0.05).
    CONCLUSION: Our study suggests a possible involvement of CYP2D6 genotypes in cardiovascular system diseases, which need to be validated by further studies.
    Matched MeSH terms: Cardiovascular Diseases/genetics*
  2. Maheshwari R, Tekade M, Sharma PA, Tekade RK
    Curr Pharm Des, 2015;21(30):4427-40.
    PMID: 26471319
    Cardiovascular diseases (CVDs), primarily myocardial infarction (MI), atherosclerosis, hypertension and congestive heart failure symbolize the foremost cause of death in almost all parts of the world. Besides the traditional therapeutic approaches for the management of CVDs, newer innovative strategies are also emerging on the horizon. Recently, gene silencing via small interfering RNA (siRNA) is one of the hot topics amongst various strategies involved in the management of CVDs. The siRNA mechanism involves natural catalytic processes to silence pathological genes that are overexpressed in a particular disease. Also the versatility of gene expression by siRNA deciphers a prospective tactic to down-regulate diseases associated gene, protein or receptor existing on a specific disease target. This article reviews the application of siRNA against CVDs with special emphasis on gene targets in combination with delivery systems such as cationic hydrogels, polyplexes, peptides, liposomes and dendrimers.
    Matched MeSH terms: Cardiovascular Diseases/genetics*
  3. Etemad A, Vasudevan R, Aziz AF, Yusof AK, Khazaei S, Fawzi N, et al.
    Genet. Mol. Res., 2016 Apr 07;15(2).
    PMID: 27173202 DOI: 10.4238/gmr.15025845
    Type 2 diabetes mellitus (T2DM) is believed to be associated with excessive production of reactive oxygen species. Glutathione S-transferase (GST) polymorphisms result in decreased or absent enzyme activity and altered oxidative stress, and have been associated with cardiovascular disease (CVD). The present study assessed the effect of GST polymorphisms on the risk of developing T2DM in individuals of Malaysian Malay ethnicity. A total of 287 subjects, consisting of 87 T2DM and 64 CVD/T2DM patients, as well as 136 healthy gender- and age-matched controls were genotyped for selected polymorphisms to evaluate associations with T2DM susceptibility. Genomic DNA was extracted using commercially available kits, and GSTM1, GSTT1, and α-globin sequences were amplified by multiplex polymerase chain reaction. Biochemical parameters were measured with a Hitachi autoanalyzer. The Fisher exact test, the chi-square statistic, and means ± standard deviations were calculated using the SPSS software. Overall, we observed no significant differences regarding genotype and allele frequencies between each group (P = 0.224 and 0.199, respectively). However, in the combined analysis of genotypes and blood measurements, fasting plasma glucose, HbA1c, and triglyceride levels, followed by age, body mass index, waist-hip ratio, systolic blood pressure, and history of T2DM significantly differed according to GST polymorphism (P ˂ 0.05). Genetically induced absence of the GSTT1 enzyme is an independent and powerful predictor of premature vascular morbidity and death in individuals with T2DM, and might be triggered by cigarette smoking's oxidative effects. These polymorphisms could be screened in other ethnicities within Malaysia to determine further possible risk factors.
    Matched MeSH terms: Cardiovascular Diseases/genetics*
  4. Leong SL, Chaiyakunapruk N, Tassaneeyakul W, Arunmanakul P, Nathisuwan S, Lee SWH
    Int J Cardiol, 2019 04 01;280:190-197.
    PMID: 30594345 DOI: 10.1016/j.ijcard.2018.12.049
    BACKGROUND: Exploration on genetic roles in antineoplastic-related cardiovascular toxicity has increased with the advancement of genotyping technology. However, knowledge on the extent of genetic determinants in affecting the susceptibility to the cardiovascular toxicities of antineoplastic is limited. This study aims to identify potential single nucleotide polymorphism (SNP) in predicting non-anthracycline antineoplastic-related cardiovascular toxicity.

    METHODS: We systematically searched for original research in PubMed, Cochrane Central Register of Controlled Studies, CINAHL Plus, EMBASE and HuGE Navigator from database inception until January 2018. Studies on association between polymorphism and antineoplastic-induced cardiovascular toxicity in patients treated for cancer of all antineoplastic agents were included except for anthracycline. Case reports, conference abstracts, reviews and non-patient studies were excluded. Data extracted by two independent reviewers were combined with random-effects model and reported according to PRISMA and MOOSE guidelines.

    RESULTS: The 35 studies included examined a total of 219 SNPs in 80 genes, 11 antineoplastic and 5 types of cardiovascular toxicities. Meta-analyses showed that human epidermal growth factor receptor 2 (HER2) rs1136201, a risk variants (pooled OR: 2.43; 1.17-5.06, p = 0.018) is a potential predictors for trastuzumab-related cardiotoxicity. Gene dose effect analysis showed number of variant allele may contribute to the risk too.

    CONCLUSIONS: This review found that HER2 rs1136201 can have the potential in predicting trastuzumab-related heart failure. As such, further studies are needed to confirm the validity of these results as well as determine the economic aspect of using SNPs prior to its implementation as a clinical practice.

    Matched MeSH terms: Cardiovascular Diseases/genetics*
  5. Al-Khateeb A, Al-Talib H, Mohamed MS, Yusof Z, Zilfalil BA
    Adv Clin Exp Med, 2013 Jan-Feb;22(1):57-67.
    PMID: 23468263
    BACKGROUND: Familial hypercholesterolemia and familial defective apo lipoprotein B are genetic disorders caused by defects in the low-density lipoprotein receptor gene and apo lipoprotein B 100 genes, respectively. The clinical phenotype of both diseases is characterized by increased plasma levels of total cholesterol and low density lipoprotein cholesterol, tendinous xanthomata, and premature coronary heart disease.
    OBJECTIVES: The aim of this study is to perform an association study between different gene sequence variants in low-density lipoprotein and apo lipoprotein B 100 genes to the clinical finding and lipid profile parameters of the study subjects.
    MATERIAL AND METHODS: A group of 164 familial hypercholesterolemic patients were recruited. The promoter region, exon 2-15 of the low density lipoprotein gene and parts of exon 26 and 29 of apo lipoprotein B 100 gene were screened by Denaturating Gradient High Performance Liquid Chromatography.
    RESULTS: For the apo lipoprotein B 100 gene, those with apo lipoprotein B 100 gene mutation have a significantly higher frequency of cardiovascular disease (P = 0.045), higher low density lipoprotein cholesterol and total cholesterol: high density lipoprotein cholesterol ratio than those without mutation (P = 0.03 and 0.02, respectively). For the low density lipoprotein gene defect those with frame shift mutation group showed the worst clinical presentation in terms of low density lipoprotein cholesterol level and cardiovascular frequency.
    CONCLUSIONS: There was a statistically significant association between mutations of low density lipoprotein gene and apo lipoprotein B 100 genes and history of cardiovascular disease, younger age of presentation, family history of hyperlipidemia, tendon xanthoma and low density lipoprotein cholesterol level.
    Study site: Cardiology Clinic, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
    Matched MeSH terms: Cardiovascular Diseases/genetics
  6. Moradipoor S, Ismail P, Etemad A, Wan Sulaiman WA, Ahmadloo S
    Biomed Res Int, 2016;2016:1845638.
    PMID: 27781209 DOI: 10.1155/2016/1845638
    Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT(2) Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.
    Matched MeSH terms: Cardiovascular Diseases/genetics
  7. Mayurasakorn K, Hasanah N, Homma T, Homma M, Rangel IK, Garza AE, et al.
    Metabolism, 2018 Jun;83:92-101.
    PMID: 29410348 DOI: 10.1016/j.metabol.2018.01.012
    BACKGROUND AND PURPOSE: The plasma membrane protein caveolin-1 (CAV-1) has been shown to be involved in modulating glucose homeostasis and the actions of the renin-angiotensin-aldosterone system (RAAS). Caloric restriction (CR) is widely accepted as an effective therapeutic approach to improve insulin sensitivity and reduce the severity of diabetes. Recent data indicate that polymorphisms of the CAV-1 gene are strongly associated with insulin resistance, hypertension and metabolic abnormalities in non-obese individuals. Therefore, we sought to determine whether CR improves the metabolic and cardiovascular (CV) risk factors in the lean CAV-1 KO mice.

    MATERIALS/METHODS: Twelve- to fourteen-week-old CAV-1 knockout (KO) and genetically matched wild-type (WT) male mice were randomized by genotype to one of two dietary regimens: ad libitum (ad lib) food intake or 40% CR for 4 weeks. Three weeks following the onset of dietary restriction, all groups were assessed for insulin sensitivity. At the end of the study, all groups were assessed for fasting glucose, insulin, HOMA-IR, lipids, corticosterone levels and blood pressure (BP). Aldosterone secretion was determined from acutely isolated Zona Glomerulosa cells.

    RESULTS: We confirmed that the CAV-1 KO mice on the ad lib diet display a phenotype consistent with the cardiometabolic syndrome, as shown by higher systolic BP (SBP), plasma glucose, HOMA-IR and aldosterone levels despite lower body weight compared with WT mice on the ad lib diet. CAV-1 KO mice maintained their body weight on the ad lib diet, but had substantially greater weight loss with CR, as compared to caloric restricted WT mice. CR-mediated changes in weight were associated with dramatic improvements in glucose and insulin tolerance in both genotypes. These responses to CR, however, were more robust in CAV-1KO vs. WT mice and were accompanied by reductions in plasma glucose, insulin and HOMA-IR in CAV-1KO but not WT mice. Surprisingly, in the CAV-1 KO, but not in WT mice, CR was associated with increased SBP and aldosterone levels, suggesting that in CAV-1 KO mice CR induced an increase in some CV risk factors.

    CONCLUSIONS: CR improved the metabolic phenotype in CAV-1 KO mice by increasing insulin sensitivity; nevertheless, this intervention also increased CV risk by inappropriate adaptive responses in the RAAS and BP.

    Matched MeSH terms: Cardiovascular Diseases/genetics*
  8. Ngow H, Teh LK, Langmia IM, Lee WL, Harun R, Ismail R, et al.
    Xenobiotica, 2008 Jun;38(6):641-51.
    PMID: 18570163 DOI: 10.1080/00498250801999087
    1. A retrospective study was conducted to explore the importance of CYP2C9 genotyping for the initiation and maintenance therapy of warfarin in clinical practice. A total of 191 patients on warfarin therapy in a local hospital were recruited after written informed consent. Their medical records were reviewed and no intervention of warfarin dose was performed. 2. A total of 5 ml of blood were taken from each subject for DNA extraction and identification of 1, 2, 3 and 4 CYP2C9 alleles, using a nested-allele-specific-multiplex-polymerase chain reaction (PCR). Half the patients were Malays and the remaining were Chinese. 3. Two genotypes were detected; 93.2% had CYP2C9 1/1 and 6.8% were CYP2C9 1/3. Warfarin doses were higher in patients with CYP2C91/1. Patients with the 1/3 genotype experienced a higher rate of serious and life-threatening bleeding; 15.4 versus 6.2 per 100 patients per 6 months. 4. The observation clearly highlights the inadequacy of the current dosing regimens and the need to move toward a more individualized approach to warfarin therapy. Prospective clinical studies are now being conducted to assess dosing algorithms that incorporate the contribution of the genotype to allow the individualization of warfarin dose.
    Matched MeSH terms: Cardiovascular Diseases/genetics
  9. Jalil NJ, Bannur Z, Derahman A, Maskon O, Darinah N, Hamidi H, et al.
    J Pharm Pharm Sci, 2015;18(3):474-83.
    PMID: 26517138
    PURPOSE:   Enzymes potentially responsible for the pharmacokinetic variations of aspirin include cyclooxygenase-1 (COX-1), UDP-glucuronosyltransferase (UGT1A6) and P450 (CYP) (CYP2C9). We therefore aimed to determine the types and frequencies of variants of COX-1 (A-842G), UGT1A6 (UGT1A6*2; A541G and UGT1A6*3; A522C) and CYP2C9 (CYP2C9*3; A1075C) in the three major ethnic groups in Malaysia. In addition, the role of these polymorphisms on aspirin-induced gastritis among the patients was investigated.

    METHODS: A total of 165 patients with cardiovascular disease who were treated with 75-150 mg daily dose of aspirin and 300 healthy volunteers were recruited. DNA was extracted from the blood samples and genotyped for COX-1 (A-842G), UGT1A6 (UGT1A6*2 and UGT1A6*3) and CYP2C9 (CYP2C9*3; A1075C) using allele specific polymerase chain reaction (AS-PCR).

    RESULTS: Variants UGT1A6*2,*3 and CYP2C9*3 were detected in relatively high percentage of 22.83%, 30.0% and 6.50%, respectively; while COX-1 (A-842G) was absent. The genotype frequencies for UGT1A6*2 and *3 were significantly different between Indians and Malays or Chinese. The level of bilirubin among patients with different genotypes of UGT1A6 was significantly different (p-value < 0.05). In addition, CYP2C9*3 was found to be associated with gastritis with an odd ratio of 6.8 (95 % Cl OR: 1.39 - 33.19; P = 0.033).

    CONCLUSION: Screening of patients with defective genetic variants of UGT1A6 and CYP2C9*3 helps in identifying patients at risk of aspirin induced gastritis. However, a randomised clinical study of bigger sample size would be needed before it is translated to clinical use.

    Matched MeSH terms: Cardiovascular Diseases/genetics*
  10. Biswas M, Rahaman S, Biswas TK, Ibrahim B
    Expert Opin Drug Saf, 2020 Dec;19(12):1605-1616.
    PMID: 33040624 DOI: 10.1080/14740338.2020.1836152
    INTRODUCTION: The effects of the ABCB1 C3435T genetic polymorphism on clopidogrel responses are conflicting and inconclusive especially in patients undergoing percutaneous coronary intervention (PCI). This study examined the pooled risk of major adverse cardiovascular events (MACE) and bleeding events associated with the ABCB1 C3435T polymorphism in acute coronary syndrome or coronary artery disease patients undergoing PCI and treated with clopidogrel.

    AREAS COVERED: Literature was searched in different resources for eligible studies. The pooled risk ratio was measured using RevMan software, with p<0.05 (two-sided) set as statistically significant.

    EXPERT OPINION: The ABCB1 C3435T homozygous mutant (TT) was associated with significantly increased risk of MACE compared to either wild type genotype (CC) or the combination of wild type and heterozygous genotypes (TT vs. CC: RR 1.33; 95% CI 1.06-1.68; p=0.02; TT vs. CC+CT: RR 1.32; 95% CI 1.10-1.60; p=0.004). Safety outcomes, i.e. bleeding events were not significantly different between the genetic models investigated (TT vs. CC: RR 1.93; 95% CI 0.86-4.35; p=0.11; TT vs. CC+CT: RR 1.36; 95% CI 0.89-2.09; p=0.16; CT+TT vs. CC: RR 1.20; 95% CI 0.59-2.44; p=0.61). It is suggested that ABCB1 C3435T genotype should be tested for ACS/CAD patients undergoing PCI to ensure optimum therapy of clopidogrel.

    Matched MeSH terms: Cardiovascular Diseases/genetics
  11. Tan SSN, Fong AYY, Mejin M, Gerunsin J, Kong KL, Chin FYY, et al.
    Pharmacogenomics, 2017 08;18(13):1225-1239.
    PMID: 28745576 DOI: 10.2217/pgs-2017-0078
    BACKGROUND: Patients undergoing elective percutaneous coronary intervention (PCI) with drug-eluting stents (DES) who have impaired clopidogrel response, have a higher risk of subsequent major adverse cardiovascular events (MACE).

    AIM OF THE STUDY: To establish the relationship between CYP2C19 genotype, clopidogrel responsiveness and 1-year MACE.

    MATERIALS & METHODS: Aspirin/clopidogrel responses were assessed with Multiplate Analyzer and CYP2C19*2 allele by SpartanRx.

    RESULTS: A total of 42.0% carried ≥1 CYP2C19*2 allele. Prevalences of aspirin and clopidogrel high on-treatment platelet reactivity (HPR; local cutoffs: 300 AU*min for aspirin and 600 AU*min for clopidogrel) were 11.5% and 19.8% respectively. In multivariate ana-lysis, clopidogrel HPR was found to be an independent predictor for 1-year MACE (adj HR: 3.48, p = 0.022 ).

    CONCLUSION: Having clopidogrel HPR could be a potentially modifiable risk factor guided by phenotyping.

    Matched MeSH terms: Cardiovascular Diseases/genetics*
  12. Yap RWK, Lin MH, Shidoji Y, Yap WS
    Nutrients, 2019 May 22;11(5).
    PMID: 31121870 DOI: 10.3390/nu11051140
    Gene-environment (G × E) interactions involving job stress and mental health on risk factors of cardiovascular disease (CVD) are minimally explored. This study examined the association and G × E interaction effects of vascular endothelial growth factor receptor-2 (VEGFR-2) gene polymorphisms (rs1870377, rs2071559) on cardiometabolic risk in Chinese Malaysian adults. Questionnaires: Job Stress Scale (JSS); Depression, Anxiety, and Stress Scale (DASS-21); and Rhode Island Stress and Coping Inventory (RISCI) were used to measure job stress, mental health, and coping with perceived stress. Cardiometabolic risk parameters were evaluated in plasma and genotyping analysis was performed by real-time polymerase chain reaction. The subjects were 127 Chinese Malaysian adults. The allele frequencies for rs1870377 (A allele and T allele) and rs2071557 (A allele and T allele) polymorphisms were 0.48 and 0.52, and 0.37 and 0.63, respectively. Significant correlations include scores from JSS dimensions with blood glucose (BG) (p = 0.025-0.045), DASS-21 dimensions with blood pressure, BMI, and uric acid (p = 0.029-0.047), and RISCI with blood pressure and BG (p = 0.016-0.049). Significant G × E interactions were obtained for: rs1870377 with stress on total cholesterol (p = 0.035), low density lipoprotein cholesterol (p = 0.019), and apolipoprotein B100 (p = 0.004); and rs2071559 with anxiety on blood pressure (p = 0.006-0.045). The significant G × E interactions prompt actions for managing stress and anxiety for the prevention of CVD.
    Matched MeSH terms: Cardiovascular Diseases/genetics*
  13. Yap RW, Shidoji Y, Hon WM, Masaki M
    Asia Pac J Clin Nutr, 2012;21(2):302-11.
    PMID: 22507619
    Dietary pattern and genetic predisposition of each population have different impacts on lifestyle-related chronic diseases. This study was conducted to evaluate the association and interaction between dietary patterns and VEGFR2 or KDR gene polymorphisms on physical and biochemical risk factors of cardiovascular disease in two Asian populations (179 Chinese Malaysian and 136 Japanese adults).
    Matched MeSH terms: Cardiovascular Diseases/genetics
  14. Poh R, Muniandy S
    PMID: 17539292
    The role of high-density lipoprotein associated paraoxonase (PON) 1 in protection against oxidative stress associated with the development of complications in diabetes mellitus has been reported. Variations in the PON1 gene, 55LM and 192QR have been described in different populations. These variations are known to be risk factors for heart disease, especially the L and R alleles. We have investigated the prevalence of both polymorphisms in the Malaysian population comprising the three major ethnic groups: Malay, Chinese and Indian, using polymerase chain reaction followed by restriction endonuclease digestion. The results show the pooled frequencies of L and R alleles were 0.91 and 0.54, respectively, similar to those in the Asian region. The frequency of the M allele was higher in Indians (p < 0.05), whereas the R allele was higher in both the Chinese and Malays compared to Indians (p < 0.05), indicating ethnic group-dependent genetic differences. The most common genotypic combination was LL/QR, followed by LL/RR. The genotype frequencies for the total Malaysian population showed a significant departure from Hardy-Weinberg equilibrium for the 55LM (p = 0.013) but not the 192QR (p = 0.056) polymorphisms. A strong linkage disequilibrium between L/55 and R/192 alleles was also observed. In the Malaysian population as a whole, Malays and Chinese showed a higher frequency of the R allele which is a risk factor for cardiovascular diseases.
    Matched MeSH terms: Cardiovascular Diseases/genetics*
  15. Tai ES, Sim XL, Ong TH, Wong TY, Saw SM, Aung T, et al.
    J Lipid Res, 2009 Mar;50(3):514-520.
    PMID: 18987386 DOI: 10.1194/jlr.M800456-JLR200
    We conducted a cross-sectional study of Malay participants aged 40-80 years (n = 2,932) to examine the associations between polymorphisms at newly identified, lipid-associated loci with blood lipid levels and prevalent cardiovascular disease (CVD) in a Malay population in Asia. A polymorphism adjacent to the TRIB1 locus (rs17321515) was associated with elevated total cholesterol and LDL-cholesterol (LDL-C) after adjustment for age and sex (both P values <0.007) and with increased risk of coronary heart disease and CVD [odds ratio (OR) 1.23, 95% confidence interval (95% CI) 1.03-1.46; and OR 1.2, 95% CI 1.02-1.42, respectively] under an additive model of inheritance. In addition, using recessive models of inheritance, polymorphisms on chromosome 19 adjacent to the CILP2 and PBX4 loci (rs16996148) and on chromosome 1 at the GALNT2 locus (rs4846914) were associated with elevated HDL-C (P = 0.005) and lower LDL-C (P = 0.048), respectively. Although novel, the former is consistent with the association between this polymorphism and lower blood triglycerides observed in the initial studies conducted in populations of European ancestry. Neither showed statistically significant association with CVD. These observations should form the basis of further investigation to identify the causative polymorphisms at this locus, and also to understand the mechanistic roles that this protein may play in lipoprotein metabolism in Asians and other populations.
    Matched MeSH terms: Cardiovascular Diseases/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links