Displaying all 13 publications

Abstract:
Sort:
  1. VELLA F
    Med J Malaya, 1960 Mar;14:191-2.
    PMID: 13780663
    Matched MeSH terms: Catalase/blood*
  2. Shafin N, Zakaria R, Hussain NH, Othman Z
    Menopause, 2013 Jun;20(6):661-6.
    PMID: 23715378 DOI: 10.1097/GME.0b013e31827758c6
    The aim of this study was to examine the association between changes in blood oxidative stress level/activity and changes in memory performance among postmenopausal women.
    Matched MeSH terms: Catalase/blood
  3. Mikail MA, Ahmed IA, Ibrahim M, Hazali N, Abdul Rasad MS, Abdul Ghani R, et al.
    Eur J Nutr, 2016 Jun;55(4):1435-44.
    PMID: 26091909 DOI: 10.1007/s00394-015-0961-7
    PURPOSE: The consequence of the increased demand due to the population expansion has put tremendous pressure on the natural supply of fruits. Hence, there is an unprecedented growing interest in the exploration of the potentials of underutilized fruits as alternatives to the commercially available fruits. Baccaurea angulata is an underutilized fruit widely distributed in Borneo Island of Malaysia. The present study was conducted to investigate the effects of B. angulata whole fruit (WF), skin (SK) and pulp (PL) juices on malondialdehyde (MDA) levels and antioxidant enzymes in rabbits fed high-cholesterol diet.

    METHODS: Thirty-six male rabbits of New Zealand strain were randomly assigned to six groups. Rabbits were fed either a standard pellet (group NC) or a high-cholesterol diet (groups HC, PC, WF, SK and PL). Groups WF, SK and PL were also given 1 ml/kg/day B. angulata WF, SK and PL juices, respectively.

    RESULTS: Baccaurea angulata had high antioxidant activities. The administration of the various juices significantly reduced (p 

    Matched MeSH terms: Catalase/blood
  4. Eng LI, McKay DA, Govindasamy S
    PMID: 5002823
    Matched MeSH terms: Catalase/blood
  5. Achin NA, Kit TJ, Ngah WZW, Makpol S, Mazlan M, Hamezah HS, et al.
    Curr Aging Sci, 2018;11(3):182-194.
    PMID: 30338748 DOI: 10.2174/1874609811666181019141217
    BACKGROUND: Cognitive frailty emerges as one of the threats to healthy aging. It is in continuum with advancing of age with uncertain indicator between pathological and physiological changes. Alterations in pathways associated with the aging process have been observed including oxidative stress, lipid metabolism, and inflammation. However, the exact mechanisms leading to cognitive decline are still unclear.

    OBJECTIVE: This study was sought to assess the level of cognitive functions and linked with blood oxidative status during normal aging in rats.

    METHODS: A longitudinal study using male Sprague Dawley rats was performed starting from the age of 14 months old to 27 months old. Cognitive functions tests such as open field, Morris water maze and object recognition were determined at the age of 14, 18, 23, and 27 months old and were compared with group 3 months old. Blood was collected from the orbital venous sinus and oxidative status was determined by measuring the level of DNA damage, lipid peroxidation, protein oxidation and antioxidant enzymes activity.

    RESULTS: Aged rats showed declining exploratory behavior and increased in the level of anxiety as compared to the young rats. The level of DNA damage increased with increasing age. Interestingly, our study found that both levels of malondialdehyde and plasma carbonyl content decreased with age. In addition, the level of superoxide dismutase activity was significantly decreased with age whereas catalase activity was significantly increased from 18 months of age. However, no significant difference was found in glutathione peroxidase activity among all age groups.

    CONCLUSION: The progressions of cognitive impairment in normal aging rats are linked to the increment in the level of DNA damage.

    Matched MeSH terms: Catalase/blood
  6. Goon JA, Aini AH, Musalmah M, Anum MY, Nazaimoon WM, Ngah WZ
    J Phys Act Health, 2009 Jan;6(1):43-54.
    PMID: 19211957
    BACKGROUND: The biochemical mechanisms involving oxidative stress to explain the relationship between exercise and healthy aging are still unclear.

    METHODS: Tai Chi participants and matched sedentary volunteers age 45 and above were enrolled. Glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities; levels of DNA damage using the comet assay; and malondialdehyde (MDA) and advanced glycation end products (AGE) were determined at 0, 6, and 12 months.

    RESULTS: Tai Chi subjects had decreased normal and increased mildly damaged DNA with elevated GPx activity after 6 months (n=25). Plasma MDA and AGE concentrations decreased significantly after 12 months (n=15) accompanied by increased SOD activity. This may be attributed to the hormesis effect, whereby mild induction of oxidative stress at the first 6 months of exercise resulted in stimulation of antioxidant defenses. These parameters were unchanged in the sedentary subjects in the first 6 months (n=27) except for elevated SOD activity. After 12 months, the sedentary subjects (n=17) had decreased normal DNA and increased severely damaged DNA with unaltered MDA and AGE levels while SOD and GPx activities were significantly elevated.

    CONCLUSION: Regular Tai Chi exercise stimulated endogenous antioxidant enzymes and reduced oxidative damage markers.

    Matched MeSH terms: Catalase/blood
  7. Nathan FM, Singh VA, Dhanoa A, Palanisamy UD
    BMC Cancer, 2011;11:382.
    PMID: 21871117 DOI: 10.1186/1471-2407-11-382
    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas.
    Matched MeSH terms: Catalase/blood
  8. Jalil AM, Ismail A, Pei CP, Hamid M, Kamaruddin SH
    J Agric Food Chem, 2008 Sep 10;56(17):7877-84.
    PMID: 18702467 DOI: 10.1021/jf8015915
    In this present study, we investigated the effects of cocoa extract containing polyphenols and methylxanthines prepared from cocoa powder on the biochemical parameters of obese-diabetic (Ob-db) rats. Obese-diabetic (Ob-db) rats were developed using a high-fat diet (49% fat, 32% carbohydrate, and 19% protein from total energy, kcal) for 3 months, followed by a low dose (35 mg/kg body weight) streptozotocin (STZ) injection. Cocoa extract (600 mg/kg body weight/day) was given to the rats for 4 weeks. The results indicated that there were no significant differences in fasting plasma glucose and insulin level after 4 weeks of cocoa extract administration. Oral glucose tolerance test revealed that cocoa supplementation in Ob-db rats significantly (p < 0.05) reduced plasma glucose at 60 and 90 min compared to unsupplemented Ob-db rats. Plasma free fatty acid and oxidative stress biomarker (8-isoprostane) were significantly (p < 0.05) reduced after cocoa supplementation. Superoxide dismutase activity was enhanced in Ob-db compared to that in nonsupplemented rats. However, no change was observed in catalase activity. The results showed that cocoa supplementation had an effect on postprandial glucose control but not for long term (4 weeks). Moreover, cocoa supplementation could reduce circulating plasma free fatty acid and 8-isoprostane and may enhance the antioxidant defense system.
    Matched MeSH terms: Catalase/blood
  9. Musalmah M, Fairuz AH, Gapor MT, Ngah WZ
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S448-51.
    PMID: 12492633
    Vitamin E is composed of various subfamilies that include tocopherols and tocotrienols. These compounds have antioxidant properties but differ in structure, dietary source and potency. In this study we evaluated the efficacy of alpha-tocopherol as an antioxidant and its role in wound closure in normal and streptozotocin-induced diabetic rats. The healing of 6 cm linear incisions created on the back of each male Sprague-Dawley rat (250-300 g) was monitored by measuring the length of the wounds daily. The rats were divided into two categories; normal and streptozotocin-induced diabetic rats. For each category, the animals were further divided into two groups; those untreated and those receiving 200 mg/kg bodyweight alpha-tocopherols daily by oral gavage. All rats were fed standard food and water ad libitum. Blood samples were taken at 0, 5 and 10 days after the wounds were created for the determination of malondialdehyde levels and red cell superoxide dismutase, catalase and glutathione peroxidase activities. The results showed that alpha-tocopherol reduced plasma malondialdehyde levels, increased glutathione peroxidase activity and accelerated the rate of wound closure in treated rats.
    Matched MeSH terms: Catalase/blood
  10. Tan SG, Barker JS, Selvaraj OS, Mukherjee TK, Wong YF
    Biochem Genet, 1993 Jun;31(5-6):223-30.
    PMID: 8259925
    We have developed the methodologies for typing and family studies to establish the modes of inheritance of water buffalo red cell acid phosphatase (Acp), protease inhibitor (Pi), and group-specific component (Gc) on isoelectric focusing and albumin (Alb), red cell alpha-esterase-3 (Est-3), and catalase (Cat) on polyacrylamide gel electrophoresis. Family studies showed that Pi, Gc, Alb, and Cat are coded by autosomal genes with two codominant alleles, while Est-3 is autosomal with two codominant alleles and a recessive null allele and Acp exhibits three codominant alleles.
    Matched MeSH terms: Catalase/blood
  11. Aliahmat NS, Noor MR, Yusof WJ, Makpol S, Ngah WZ, Yusof YA
    Clinics (Sao Paulo), 2012 Dec;67(12):1447-54.
    PMID: 23295600
    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris.

    METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level.

    RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments.

    CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.

    Matched MeSH terms: Catalase/blood
  12. Looi ML, Mohd Dali AZ, Md Ali SA, Wan Ngah WZ, Mohd Yusof YA
    Eur J Cancer Prev, 2008 Nov;17(6):555-60.
    PMID: 18941377 DOI: 10.1097/CEJ.0b013e328305a10b
    Free radicals that induced lipid peroxidation and DNA damage have been implicated in many diseases including cancer. Cellular antioxidant defense plays an important role in neoplastic disease to counteract oxidative damage. This study aims to investigate the status of oxidative damage by measuring plasma malondialdehyde (MDA) level and urinary 8-hydroxydeoxyguanosine (8-OHdG), and the level of antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase in patients with cervical intraepithelial neoplasia (CIN) and squamous cell carcinoma (SCC) of the cervix. Urinary 8-OHdG was measured by an enzyme-linked immunosorbent assay kit. MDA and antioxidant enzyme activities were determined by high-performance liquid chromatography and spectrophotometry, respectively. Eighty patients with CIN and SCC of the cervix were recruited and compared with normal controls. Urinary 8-OHdG/creatinine ratio did not show any significant changes in any disease status studied as compared with controls (P=0.803). Plasma MDA was found to be increased in CIN and SCC patients when compared with controls (P=0.002). Glutathione peroxidase activity was increased (P=0.0001) whereas superoxide dismutase and catalase activity was decreased (P=0.019 and 0.0001, respectively) in both CIN and SCC patients when compared with controls. Urinary 8-OHdG may not be a good marker for enhanced oxidative stress in cervical cancer. Oxidative damage as demonstrated by the level of MDA is markedly increased in CIN and SCC patients with changes of enzymatic antioxidants observed.
    Matched MeSH terms: Catalase/blood
  13. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, et al.
    Biomed Pharmacother, 2021 Aug;140:111732.
    PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732
    Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
    Matched MeSH terms: Catalase/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links