Displaying all 17 publications

Abstract:
Sort:
  1. Sathasivam HP, Casement J, Bates T, Sloan P, Thomson P, Robinson M, et al.
    J Oral Pathol Med, 2021 Jan;50(1):60-67.
    PMID: 32740996 DOI: 10.1111/jop.13090
    BACKGROUND: A large number of oral squamous cell carcinomas (OSCCs) are believed to be preceded by oral potentially malignant disorders (OPMD) that have an increased likelihood of malignant transformation compared to clinically normal mucosa. This study was performed to identify differentially expressed genes between OPMDs that underwent malignant transformation (MT) and those that did not, termed "non-transforming" (NT) cases.

    METHODS: Total RNA was extracted from formalin-fixed paraffin-embedded tissue biopsies of 20 OPMD cases with known clinical outcomes (10 MT vs. 10 NT). Samples were assessed for quantity, quality and integrity of RNA prior to sequencing. Analysis for differential gene expression between MT and NT was performed using statistical packages in R. Genes were considered to be significantly differentially expressed if the False Discovery Rate corrected P-value was  1.90). Analysis of RNA-Sequencing outputs revealed 41 genes (34 protein-coding; 7 non-coding) that were significantly differentially expressed between MT and NT cases. The log2 fold change for the statistically significant differentially expressed genes ranged from -2.63 to 2.48, with 23 protein-coding genes being downregulated and 11 protein-coding genes being upregulated in MT cases compared to NT cases.

    CONCLUSION: Several candidate genes that may play a role in malignant transformation of OPMD have been identified. Experiments to validate these candidates are underway. It is anticipated that this work will contribute to better understanding of the etiopathogenesis of OPMD and development of novel biomarkers.

    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  2. Gan CP, Lee BKB, Lau SH, Kallarakkal TG, Zaini ZM, Lye BKW, et al.
    Front Immunol, 2022;13:954567.
    PMID: 36119104 DOI: 10.3389/fimmu.2022.954567
    Oral potentially malignant disorders (OPMD) are precursors of oral squamous cell carcinoma (OSCC), and the presence of oral epithelial dysplasia (OED) in OPMD confers an increased risk of malignant transformation. Emerging evidence has indicated a role for the immune system in OPMD disease progression; however, the underlying immune mechanisms remain elusive. In this study, we used immune signatures established from cancer to delineate the immune profiles of moderate and severe OED, which are considered high-risk OPMD. We demonstrated that moderate and severe OEDs exhibit high lymphocyte infiltration and upregulation of genes involved in both immune surveillance (major histocompatibility complex-I, T cells, B cells and cytolytic activity) and immune suppression (immune checkpoints, T regulatory cells, and tumor-associated macrophages). Notably, we identified three distinct subtypes of moderate and severe OED: immune cytotoxic, non-cytotoxic and non-immune reactive. Active immune surveillance is present in the immune cytotoxic subtype, whereas the non-cytotoxic subtype lacks CD8 immune cytotoxic response. The non-immune reactive subtype showed upregulation of genes involved in the stromal microenvironment and cell cycle. The lack of T cell infiltration and activation in the non-immune reactive subtype is due to the dysregulation of CTNNB1, PTEN and JAK2. This work suggests that moderate and severe OED that harbor the non-cytotoxic or non-immune reactive subtype are likely to progress to cancer. Overall, we showed that distinct immune responses are present in high-risk OPMD, and revealed targetable pathways that could lead to potential new approaches for non-surgical management of OED.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  3. Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, et al.
    Biomed Pharmacother, 2024 Apr;173:116275.
    PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275
    Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  4. Ahmed Adam MA, Tabana YM, Musa KB, Sandai DA
    Oncol Rep, 2017 Mar;37(3):1321-1336.
    PMID: 28184933 DOI: 10.3892/or.2017.5424
    The chemical nature of most of the mycotoxins makes them highly liposoluble compounds that can be absorbed from the site of exposure such as from the gastrointestinal and respiratory tract to the blood stream where it can be dissimilated throughout the body and reach different organs such as the liver and kidneys. Mycotoxins have a strong tendency and ability to penetrate the human and animal cells and reach the cellular genome where it causes a major mutagenic change in the nucleotide sequence which leads to strong and permanent defects in the genome. This defect will eventually be transcribed, translated and lead to the development of cancer. In this review, the chemical and physical nature of mycotoxins, the action of mycotoxins on the cellular genome and its effect on humans, mycotoxins and their carcinogenicity and mycotoxins research gaps are discussed, and new research areas are suggested. The research review posed various questions. What are the different mycotoxins that can cause cancer, what is the role of mycotoxins in causing cancer and what types of cancers can be caused by mycotoxins? These questions have been selected due to the significant increase in the mycotoxin contamination and the cancer incidence rate in the contemporary world. By revealing and understanding the role of mycotoxins in developing cancer, measures to reduce the risks and incidents of cancer could be taken.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  5. Mansor NA, Yusof N, Tang YL, Ithnin A, Azma RZ, Tumian NR, et al.
    Malays J Pathol, 2018 Aug;40(2):191-197.
    PMID: 30173238 MyJurnal
    INTRODUCTION: Essential thrombocythaemia (ET) is a chronic myeloproliferative neoplasm (MPN) characterised by persistent thombocytosis. It is an indolent disorder but transformation to myelofibrosis (MF), acute myeloid leukaemia (AML) or myelodyplastic syndrome (MDS) has been reported.

    CASE REPORT: We described a patient with ET whose disease evolved into MDS with fibrosis and complex karyotype after 15 years of stable disease. She was asymptomatic and was on hydroxyurea (HU) treatment until recently when she presented with worsening anaemia. Physical examination showed mild splenomegaly. Full blood picture showed leukoerythroblastic picture with presence of 3% circulating blasts and background of dysplastic features such as hypogranular cytoplasm and nuclear hyposegmentation of neutrophils. The bone marrow aspiration was haemodiluted but revealed presence of 6% blast cells, trilineage dysplasia and predominant erythroid precursors (60%). Trephine biopsy showed no excess of blast cells and normal quantity of erythroid precursors, but there was increased in fibrosis (WHO grade 2) and presence of dysmegakaryopoeisis such as nuclear hypolobation, multinucleation and micromegakaryocytes. Cytogenetic study showed complex karyotype; monosomy of chromosome 2, chromosome 5, chromosome 18 and presence of a marker chromosome (42~44, XX,-2,-5,-18,+mar). Fluorescence in situ hybridisation (FISH) showed 5q deletion (CSF1R and EGR1).

    CONCLUSION: The findings were consistent with transformation of ET to MDS with fibrosis and complex karyotype. ET progression to MDS is considered rare. The presence of complex karyotype and fibrosis in MDS are associated with unfavourable outcome.

    Matched MeSH terms: Cell Transformation, Neoplastic/genetics*
  6. Sam KK, Gan CP, Yee PS, Chong CE, Lim KP, Karen-Ng LP, et al.
    Oral Oncol, 2012 Nov;48(11):1128-35.
    PMID: 22705356 DOI: 10.1016/j.oraloncology.2012.05.016
    The presence of a variety of MDM2 splice variants has been reported in a range of different tumor types and is associated with poor patient prognosis. Furthermore, several MDM2 variants have been shown to have oncogenic properties. Despite this, MDM2 splice variants have not been comprehensively characterized in oral squamous cell carcinoma (OSCC).
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  7. Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, et al.
    Cancer Rep (Hoboken), 2021 08;4(4):e1369.
    PMID: 33822486 DOI: 10.1002/cnr2.1369
    BACKGROUND: Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer.

    RECENT FINDINGS: Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis.

    CONCLUSION: The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.

    Matched MeSH terms: Cell Transformation, Neoplastic/genetics*
  8. Sathasivam HP, Kist R, Sloan P, Thomson P, Nugent M, Alexander J, et al.
    Br J Cancer, 2021 Aug;125(3):413-421.
    PMID: 33972745 DOI: 10.1038/s41416-021-01411-z
    BACKGROUND: This study was undertaken to develop and validate a gene expression signature that characterises oral potentially malignant disorders (OPMD) with a high risk of undergoing malignant transformation.

    METHODS: Patients with oral epithelial dysplasia at one hospital were selected as the 'training set' (n = 56) whilst those at another hospital were selected for the 'test set' (n = 66). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies and analysed using the NanoString nCounter platform. A targeted panel of 42 genes selected on their association with oral carcinogenesis was used to develop a prognostic gene signature. Following data normalisation, uni- and multivariable analysis, as well as prognostic modelling, were employed to develop and validate the gene signature.

    RESULTS: A prognostic classifier composed of 11 genes was developed using the training set. The multivariable prognostic model was used to predict patient risk scores in the test set. The prognostic gene signature was an independent predictor of malignant transformation when assessed in the test set, with the high-risk group showing worse prognosis [Hazard ratio = 12.65, p = 0.0003].

    CONCLUSIONS: This study demonstrates proof of principle that RNA extracted from FFPE diagnostic biopsies of OPMD, when analysed on the NanoString nCounter platform, can be used to generate a molecular classifier that stratifies the risk of malignant transformation with promising clinical utility.

    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  9. Azlin AH, Looi LM, Cheah PL
    Asian Pac J Cancer Prev, 2014;15(9):3959-63.
    PMID: 24935581
    The tumour suppressor genes, p53 and pRb, are known to play important roles in neoplastic transformation. While molecular routes to the uncontrolled growth of hepatocytes, leading to primary liver cancer have generated considerable interest, the roles of p53 and pRb mutations in hepatocellular carcinoma (HCC) and hepatoblastoma (HB) remain to be clarified. We examined the immunohistochemical expression of p53 and pRb gene products in 26 HCC and 9 HB, sampled into tissue microarray blocks. 10 (38%) of 26 HCC showed > 10% tumour nuclear staining for p53 protein, 3 of these also being HbsAg positive. Conversely, none of 9 HB expressed nuclear p53 immunopositivity. Some 24 (92%) HCC and 8 (89%) HB showed loss of pRb nuclear expression. Two of the 26 HCC and one of the 9 HB showed >10% tumour nuclear staining for pRb protein. Our results suggest that p53 does not have an important role in the development of HB but may contribute in HCC. There is also loss of pRb expression in the majority of HCC and HB, supporting loss of pRb gene function in the hepatocarcinogenesis pathway. However, a comparison of the staining profiles of p53 and pRb proteins in HCC and HB did not reveal a consistent pattern to differentiate between the two types of tumours immunohistochemically. Hence the use of p53 and pRB protein expression has no contribution in the situation where there is a diagnostic difficulty in deciding between HCC and HB.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  10. Thomas G, Tr S, George S P, Somanathan T, Sarojam S, Krishnankutti N, et al.
    Asian Pac J Cancer Prev, 2020 Feb 01;21(2):309-316.
    PMID: 32102504 DOI: 10.31557/APJCP.2020.21.2.309
    BACKGROUND: Although leukoplakia shows a higher risk for malignant transformation to oral cancer, currently there are no clinically relevant biomarker which can predict the potentially high risk leukoplakia. This study aimed to investigate the genetic alterations such as DNA ploidy, telomerase expression and DNA repair capacity as predictive markers of malignant transformation risk of leukoplakia.

    METHODS: The study was initiated in September 2005 and patients were followed up to March 2014. Two hundred patients with oral leukoplakia, 100 patients with oral cancer and 100 healthy, age and sex matched adults with normal oral mucosa as controls were recruited. The DNA ploidy content was measured by high resolution flow cytometry, level of telomerase expression was identified by TRAP assay and intrinsic DNA repair capacity was measured by mutagen induced chromosome sensitivity assay of cultured peripheral blood lymphocytes. The Chi-square test or Fisher's Exact test was used for comparison of categorical variables between biomarkers. A p value less than or equal to 0.05 was considered as statistically significant. Analysis was performed with SPSS software version 16. Logistic regression was used to find the association between the dependent and three independent variables.

    RESULTS: There was significant difference in the distribution of ploidy status, telomerase activity and DNA repair capacity among control, leukoplakia and oral cancer group (p<0.001). When the molecular markers were compared with histological grading of leukoplakia, both DNA ploidy analysis and telomerase activity showed statistical significance (p<0.001). Both aneuploidy and telomerase positivity was found to coincide with high-risk sites of leukoplakia and were statistically significant (p.

    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  11. Pinkham K, Park DJ, Hashemiaghdam A, Kirov AB, Adam I, Rosiak K, et al.
    Stem Cell Reports, 2019 04 09;12(4):712-727.
    PMID: 30930246 DOI: 10.1016/j.stemcr.2019.02.012
    Inherent plasticity and various survival cues allow glioblastoma stem-like cells (GSCs) to survive and proliferate under intrinsic and extrinsic stress conditions. Here, we report that GSCs depend on the adaptive activation of ER stress and subsequent activation of lipogenesis and particularly stearoyl CoA desaturase (SCD1), which promotes ER homeostasis, cytoprotection, and tumor initiation. Pharmacological targeting of SCD1 is particularly toxic due to the accumulation of saturated fatty acids, which exacerbates ER stress, triggers apoptosis, impairs RAD51-mediated DNA repair, and achieves a remarkable therapeutic outcome with 25%-100% cure rate in xenograft mouse models. Mechanistically, divergent cell fates under varying levels of ER stress are primarily controlled by the ER sensor IRE1, which either promotes SCD1 transcriptional activation or converts to apoptotic signaling when SCD1 activity is impaired. Taken together, the dependence of GSCs on fatty acid desaturation presents an exploitable vulnerability to target glioblastoma.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  12. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  13. Lim KP, Hamid S, Lau SH, Teo SH, Cheong SC
    Oncol Rep, 2007 Jun;17(6):1321-6.
    PMID: 17487385 DOI: 10.3892/or.17.6.1321
    Inactivation of the retinoblastoma (pRB) pathway is a common event in oral squamous cell carcinoma particularly through the aberrant expression of the components within this pathway. This study examines the alterations of molecules within the pRB pathway by looking at the presence of homozygous deletions in p16(INK4A) and the expression patterns of pRB, cyclin D1 and CDK4, as well as the presence of human papillomavirus (HPV) in our samples. In our study, 5/20 samples demonstrated deletions of p16(INK4A) exon 1alpha. pRB overexpression was found in 20/20 samples, the expression was mainly observed in all layers of the epithelia, particularly in the basal layer where cells are actively dividing and aberrant pRB expression was found in 12/20 samples. Cyclin D1 and CDK4 overexpression was detected in 6/20 and 2/20 samples respectively in comparison to hyperplasias where both proteins were either not expressed or expressed at minimal levels (<10%). Strikingly, HPV was found to be present in all of our samples, suggesting that HPV plays a significant role in driving oral carcinogenesis. Notably, 17/20 of our samples showed more than one alteration in the pRB pathway, however, we did not find any significant relationship between the presence of HPV, homozygous deletion of p16(INK4A) and overexpression of pRB, cyclin D1 and CDK4. Collectively, this data demonstrates that alterations in the pRB pathway are a common event and involve the aberration of more than one molecule within the pathway. Furthermore, the involvement of HPV in all our samples suggests that HPV infection may play an important role in oral carcinogenesis.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  14. Chiew MY, Boo NY, Voon K, Cheong SK, Leong PP
    Leuk Lymphoma, 2017 01;58(1):162-170.
    PMID: 27185517
    Acute monocytic leukemia (AML-M5), a subtype of acute myeloid leukemia (AML), affects mostly young children and has poor prognosis. The mechanisms of treatment failure of AML-M5 are still unclear. In this study, we generated iPSC from THP-1 cells from a patient with AML-M5, using retroviruses encoding the pluripotency-associated genes (OCT3/4, SOX2, KLF4 and c-MYC). These AML-M5-derived iPSC showed features similar with those of human embryonic stem cells in terms of the morphology, gene expression, protein/antigen expression and differentiation capability. Parental-specific markers were down-regulated in these AML-M5-derived iPSCs. Expression of MLL-AF9 fusion gene (previously identified to be associated with pathogenesis of AML-M5) was observed in all iPSC clones as well as parental cells. We conclude that AML-M5-specific iPSC clones have been successfully developed. This disease model may provide a novel approach for future study of pathogenesis and therapeutic intervention of AML-M5.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics*
  15. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2015 Apr 16;34(16):2103-14.
    PMID: 24909178 DOI: 10.1038/onc.2014.129
    Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  16. Masre SF, Rath N, Olson MF, Greenhalgh DA
    Oncogene, 2017 May 04;36(18):2529-2542.
    PMID: 27991921 DOI: 10.1038/onc.2016.402
    To study ROCK2 activation in carcinogenesis, mice expressing 4-hydroxytamoxifen (4HT)-activated ROCK2 (K14.ROCK(er)) were crossed with mice expressing epidermal-activated ras(Ha) (HK1.ras(1205)). At 8 weeks, 4HT-treated K14.ROCK(er)/HK1.ras(1205) cohorts exhibited papillomas similar to HK1.ras(1205) controls; however, K14.ROCK(er)/HK1.ras(1205) histotypes comprised a mixed papilloma/well-differentiated squamous cell carcinoma (wdSCC), exhibiting p53 loss, increased proliferation and novel NF-κB expression. By 12 weeks, K14.ROCK(er)/HK1.ras(1205) wdSCCs exhibited increased NF-κB and novel tenascin C, indicative of elevated rigidity; yet despite continued ROCK2 activities/p-Mypt1 inactivation, progression to SCC required loss of compensatory p21 expression. K14.ROCK(er)/HK1.ras(1205) papillomatogenesis also required a wound promotion stimulus, confirmed by breeding K14.ROCK(er) into promotion-insensitive HK1.ras(1276) mice, suggesting a permissive K14.ROCK(er)/HK1.ras(1205) papilloma context (wound-promoted/NF-κB(+)/p53(-)/p21(+)) preceded K14.ROCK(er)-mediated (p-Mypt1/tenascin C/rigidity) malignant conversion. Malignancy depended on ROCK(er)/p-Mypt1 expression, as cessation of 4HT treatment induced disorganized tissue architecture and p21-associated differentiation in wdSCCs; yet tenascin C retention in connective tissue extracellular matrix suggests the rigidity laid down for conversion persists. Novel papilloma outgrowths appeared expressing intense, basal layer p21 that confined endogenous ROCK2/p-Mypt1/NF-κB to supra-basal layers, and was paralleled by restored basal layer p53. In later SCCs, 4HT cessation became irrelevant as endogenous ROCK2 expression increased, driving progression via p21 loss, elevated NF-κB expression and tenascin C-associated rigidity, with p-Mypt1 inactivation/actinomyosin-mediated contractility to facilitate invasion. However, p21-associated inhibition of early-stage malignant progression and the intense expression in papilloma outgrowths, identifies a novel, significant antagonism between p21 and ras(Ha)/ROCK2/NF-κB signalling in skin carcinogenesis. Collectively, these data show that ROCK2 activation induces malignancy in ras(Ha)-initiated/promoted papillomas in the context of p53 loss and novel NF-κB expression, whereas increased tissue rigidity and cell motility/contractility help mediate tumour progression.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
  17. Mohidin TB, Ng CC
    J Biosci, 2015 Mar;40(1):41-51.
    PMID: 25740140
    Epstein-Barr virus (EBV)-encoded BARF1 (BamH1-A Rightward Frame-1) is expressed in EBV-positive malignancies such as nasopharyngeal carcinoma, EBV-associated gastric cancer, B-cell lymphoma and nasal NK/T-cell lymphoma, and has been shown to have an important role in oncogenesis. However, the mechanism by which BARF1 elicits its biological effects is unclear. We investigated the effects of BARF1 silencing on cell proliferation and apoptosis in EBV-positive malignant cells. We observed that BARF1 silencing significantly inhibits cell proliferation and induces apoptosis-mediated cell death by collapsing the mitochondrial membrane potential in AG876 and Hone-Akata cells. BARF1 knockdown up-regulates the expression of pro-apoptotic proteins and downregulates the expression of anti-apoptotic proteins. In BARF1-down-regulated cells, the Bcl-2/BAX ratio is decreased. The caspase inhibitor z-VAD-fmk was found to rescue siBARF1-induced apoptosis in these cells. Immunoblot analysis showed significant increased levels of cleaved caspase 3 and caspase 9. We observed a significant increase in cytochrome c level as well as the formation of apoptosome complex in BARF1-silenced cells. In conclusion, siRNA-mediated BARF1 down-regulation induces caspase-dependent apoptosis via the mitochondrial pathway through modulation of Bcl-2/BAX ratio in AG876 and Hone-Akata cells. Targeting BARF1 using siRNA has the potential to be developed as a novel therapeutic strategy in the treatment of EBV-associated malignancies.
    Matched MeSH terms: Cell Transformation, Neoplastic/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links