Displaying publications 1 - 20 of 23 in total

  1. Ong FB, Wan Ngah WZ, Shamaan NA, Md Top AG, Marzuki A, Khalid AK
    PMID: 7903615
    1. The effect of tocotrienol and tocopherol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (GGT) activities in cultured rat hepatocytes were investigated. 2. Tocotrienol and tocopherol significantly decreased GGT activities at 5 days in culture but tocotrienol also significantly decreased GGT activities at 1-2 days. 3. Tocotrienol and tocopherol treatment significantly decreased GST activities at 3 days compared to the control but tocotrienol also decreased GST activities at 1-3 days. 4. Tocotrienol showed a more pronounced effect at a dosage of greater than 50 microM tocotrienol at 1-3 days in culture compared to the control.
    Matched MeSH terms: Chromans/pharmacology*
  2. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, et al.
    J Med Chem, 1993 Dec 24;36(26):4131-8.
    PMID: 7506311
    As part of a search for novel inhibitors of HIV-1 reverse transcriptase, the acetone extract of the giant African snail, Achatina fulica, was shown to be active. Fractionation of the extract yielded inophyllums A, B, C, and E and calophyllolide (1a, 2a, 3a, 3b, and 6), previously isolated from Calophyllum inophyllum Linn., a known source of nutrition for A. fulica. From a methanol/methylene chloride extract of C. inophyllum, the same natural products in considerably greater yield were isolated in addition to a novel enantiomer of soulattrolide (4), inophyllum P (2b), and two other novel compounds, inophyllums G-1 (7) and G-2 (8). The absolute stereochemistry of inophyllum A (1a) was determined to be 10(R), 11(S), 12(S) from a single-crystal X-ray analysis of its 4-bromobenzoate derivative, and the relative stereochemistries of the other inophyllums isolated from C. inophyllum were established by a comparison of their 1H NMR NOE values and coupling constants to those of inophyllum A (1a). Inophyllums B and P (2a and 2b) inhibited HIV reverse transcriptase with IC50 values of 38 and 130 nM, respectively, and both were active against HIV-1 in cell culture (IC50 of 1.4 and 1.6 microM). Closely related inophyllums A, C, D, and E, including calophyllic acids, were significantly less active or totally inactive, indicating certain structural requirements in the chromanol ring. Altogether, 11 compounds of the inophyllum class were isolated from C. inophyllum and are described together with the SAR of these novel anti-HIV compounds.
    Matched MeSH terms: Chromans/pharmacology
  3. Makpol S, Zainuddin A, Chua KH, Mohd Yusof YA, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:454328.
    PMID: 23634235 DOI: 10.1155/2013/454328
    The effect of γ -tocotrienol, a vitamin E isomer, in modulating gene expression in cellular aging of human diploid fibroblasts was studied. Senescent cells at passage 30 were incubated with 70  μ M of γ -tocotrienol for 24 h. Gene expression patterns were evaluated using Sentrix HumanRef-8 Expression BeadChip from Illumina, analysed using GeneSpring GX10 software, and validated using quantitative RT-PCR. A total of 100 genes were differentially expressed (P < 0.001) by at least 1.5 fold in response to γ -tocotrienol treatment. Amongst the genes were IRAK3, SelS, HSPA5, HERPUD1, DNAJB9, SEPR1, C18orf55, ARF4, RINT1, NXT1, CADPS2, COG6, and GLRX5. Significant gene list was further analysed by Gene Set Enrichment Analysis (GSEA), and the Normalized Enrichment Score (NES) showed that biological processes such as inflammation, protein transport, apoptosis, and cell redox homeostasis were modulated in senescent fibroblasts treated with γ -tocotrienol. These findings revealed that γ -tocotrienol may prevent cellular aging of human diploid fibroblasts by modulating gene expression.
    Matched MeSH terms: Chromans/pharmacology*
  4. Rodzian MN, Aziz Ibrahim IA, Nur Azlina MF, Nafeeza MI
    Pol J Pathol, 2013 Apr;64(1):52-8.
    PMID: 23625601
    Stress has been implicated as a risk factor of various major health problems, such as stress-induced gastric mucosal injury. This study was performed to investigate the action of a pure preparation of tocotrienol (T3) concentrate, made up of 90% δ-tocotrienol and 10% γ-tocotrienol, on gastric injury of rats induced by water-immersion restraint stress (WIRS). Fourteen male Sprague-Dawley rats (200-250 g) were divided into two equal groups: a control group and a treated group. The treatment group received T3 concentrate at 60 mg/kg body weight daily for 28 days. The body weights of rats were recorded daily before the treatment was given. At the end of the treatment period, all rats were subjected to WIRS for 3.5 hours, following which the rats were euthanized. The stomachs were isolated and opened along the greater curvature for the examination of lesions and measurements of gastric malondialdehyde (MDA) and prostaglandin E₂ (PGE₂) contents. The mean gastric mucosal lesion index in the treated rats was significantly lower than that in the control rats. This suggests that the T3 concentrate has the ability to confer protection to the gastric mucosa against gastric injury induced by acute stress. No significant difference was observed for changes in body weight before and after the treatment. The gastric PGE2 content in both groups was comparable. However, the gastric MDA content was significantly higher in the treated group compared to the control group, indicating that the T3 supplementation was not able to reduce the lipid peroxidation process. This study concludes that the T3 concentrate has the ability to protect the gastric mucosa from stress-induced injury by a non-antioxidant mechanism.
    Matched MeSH terms: Chromans/pharmacology
  5. Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ
    Oxid Med Cell Longev, 2010 Jan-Feb;3(1):35-43.
    PMID: 20716926 DOI: 10.4161/oxim.3.1.9940
    The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienol prevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.
    Matched MeSH terms: Chromans/pharmacology*
  6. Tan JK, Then SM, Mazlan M, Raja Abdul Rahman RN, Jamal R, Wan Ngah WZ
    J Nutr Biochem, 2016 May;31:28-37.
    PMID: 27133421 DOI: 10.1016/j.jnutbio.2015.12.019
    Bcl-2 family proteins are crucial regulators of apoptosis. Both pro- and antiapoptotic members exist, and overexpression of the latter facilitates evasion of apoptosis in many cancer types. Bcl-2 homology domain 3 (BH3) mimetics are small molecule inhibitors of antiapoptotic Bcl-2 family members, and these inhibitors are promising anticancer agents. In this study, we report that gamma-tocotrienol (γT3), an isomer of vitamin E, can inhibit Bcl-2 to induce apoptosis. We demonstrate that γT3 induces cell death in human neuroblastoma SH-SY5Y cells by depolarising the mitochondrial membrane potential, enabling release of cytochrome c to the cytosol and increasing the activities of caspases-9 and -3. Treatment of cells with inhibitors of Bax or caspase-9 attenuated the cell death induced by γT3. Simulated docking analysis suggested that γT3 binds at the hydrophobic groove of Bcl-2, while a binding assay showed that γT3 competed with a fluorescent probe to bind at the hydrophobic groove. Our data suggest that γT3 mimics the action of BH3-only protein by binding to the hydrophobic groove of Bcl-2 and inducing apoptosis via the intrinsic pathway in a Bax- and caspase-9-dependent manner.
    Matched MeSH terms: Chromans/pharmacology*
  7. Tan JK, Jaafar F, Makpol S
    BMC Complement Altern Med, 2018 Nov 29;18(1):314.
    PMID: 30497457 DOI: 10.1186/s12906-018-2383-6
    BACKGROUND: Replicative senescence of human diploid fibroblasts (HDFs) has been used as a model to study mechanisms of cellular aging. Gamma-tocotrienol (γT3) is one of the members of vitamin E family which has been shown to increase proliferation of senescent HDFs. However, the modulation of protein expressions by γT3 in senescent HDFs remains to be elucidated. Therefore, this study aimed to determine the differentially expressed proteins (DEPs) in young and senescent HDFs; and in vehicle- and γT3-treated senescent HDFs using label-free quantitative proteomics.

    METHODS: Whole proteins were extracted and digested in-gel with trypsin. Peptides were detected by Orbitrap liquid chromatography mass spectrometry. Mass spectra were identified and quantitated by MaxQuant software. The data were further filtered and analyzed statistically using Perseus software to identify DEPs. Functional annotations of DEPs were performed using Panther Classification System.

    RESULTS: A total of 1217 proteins were identified in young and senescent cells, while 1218 proteins in vehicle- and γT3-treated senescent cells. 11 DEPs were found in young and senescent cells which included downregulation of platelet-derived growth factor (PDGF) receptor beta and upregulation of tubulin beta-2A chain protein expressions in senescent cells. 51 DEPs were identified in vehicle- and γT3-treated senescent cells which included upregulation of 70 kDa heat shock protein, triosephosphate isomerase and malate dehydrogenase protein expressions in γT3-treated senescent cells.

    CONCLUSIONS: PDGF signaling and cytoskeletal structure may be dysregulated in senescent HDFs. The pro-proliferative effect of γT3 on senescent HDFs may be mediated through the stimulation of cellular response to stress and carbohydrate metabolism. The expressions and roles of these proteins in relation to cellular senescence are worth further investigations. Data are available via ProteomeXchange with identifier PXD009933.

    Matched MeSH terms: Chromans/pharmacology*
  8. Chia LL, Jantan I, Chua KH
    Curr Pharm Biotechnol, 2017;18(7):560-568.
    PMID: 28786357 DOI: 10.2174/1389201018666170808144703
    BACKGROUND: Tocotrienols (T3) are the naturally occurring vitamin E derivatives that possess antioxidant properties and therapeutic potential in diabetic complications. The bioactivities of the derivatives are determined by the number and arrangement of methyl substitution on the structure.

    OBJECTIVE: The objective of this study was to determine the effects of T3 derivatives, σ-T3, γ-T3 and α-T3 on insulin secretion of rat pancreatic islets in a dynamic culture.

    METHOD: Pancreatic islets isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation that provided a stable cell culture environment. Glucose (2.8 mM and 16.7 mM, as basal and stimulant, respectively) and potassium chloride (KCl) (30 mM) were added to the treatment in calcium free medium. The supernatant was collected for insulin measurements.

    RESULTS: Short-term exposure (1 h) of σ-T3 to β cells in the stimulant glucose condition significantly potentiated insulin secretion in a dose-dependent manner. γ-T3 and α-T3 also displayed dosedependent effect but were less effective in the activation of insulin secretion. Essentially, KCl, a pancreatic β cell membrane depolarizing agent, added into the treatment further enhanced the insulin secretion of σ-T3, γ-T3 and α-T3 with ED50 values of 504, 511 and 588 µM, respectively.

    CONCLUSION: The findings suggest the potential of σ-T3 in regulating glucose-stimulated insulin secretion (GSIS) in response to the intracellular calcium especially in the presence of KCl.

    Matched MeSH terms: Chromans/pharmacology*
  9. Abdul Rahman A, Jamal AR, Harun R, Mohd Mokhtar N, Wan Ngah WZ
    PMID: 24980711 DOI: 10.1186/1472-6882-14-213
    Gamma-tocotrienol (GTT), an isomer of vitamin E and hydroxy-chavicol (HC), a major bioactive compound in Piper betle, has been reported to possess anti-carcinogenic properties by modulating different cellular signaling events. One possible strategy to overcome multi-drug resistance and high toxic doses of treatment is by applying combinational therapy especially using natural bioactives in cancer treatment.
    Matched MeSH terms: Chromans/pharmacology*
  10. Tan SW, Ramasamy R, Abdullah M, Vidyadaran S
    Cell Immunol, 2011;271(2):205-9.
    PMID: 21839427 DOI: 10.1016/j.cellimm.2011.07.012
    Anti-inflammatory actions of the vitamin E fragment tocotrienol have not been described for microglia. Here, we screened palm α-, γ- and δ-tocotrienol isoforms and Tocomin® 50% (contains spectrum of tocotrienols and tocopherols) for their ability to limit nitric oxide (NO) production by BV2 microglia. Microglia were treated with varying doses of tocotrienols for 24h and stimulated with 1 μg/ml lipopolysaccharide (LPS). All tocotrienol isoforms reduced NO release by LPS-stimulated microglia, with 50 μM being the most potent tocotrienol dose. Of the isoforms tested, δ-tocotrienol lowered NO levels the most, reducing NO by approximately 50% at 48 h post-LPS treatment (p
    Matched MeSH terms: Chromans/pharmacology
  11. Zainuddin A, Chua KH, Abdul Rahim N, Makpol S
    BMC Mol. Biol., 2010;11:59.
    PMID: 20707929 DOI: 10.1186/1471-2199-11-59
    Several genes have been used as housekeeping genes and choosing an appropriate reference gene is important for accurate quantitative RNA expression in real time RT-PCR technique. The expression levels of reference genes should remain constant between the cells of different tissues and under different experimental conditions. The purpose of this study was to determine the effect of different experimental treatments on the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA so that the reliability of GAPDH as reference gene for quantitative real time RT-PCR in human diploid fibroblasts (HDFs) can be validated. HDFs in 4 different treatment groups viz; young (passage 4), senescent (passage 30), H2O2-induced oxidative stress and gamma-tocotrienol (GTT)-treated groups were harvested for total RNA extraction. Total RNA concentration and purity were determined prior to GAPDH mRNA quantification. Standard curve of GAPDH expression in serial diluted total RNA, melting curve analysis and agarose gel electrophoresis were used to determine the reliability of GAPDH as reference gene.
    Matched MeSH terms: Chromans/pharmacology
  12. Then SM, Mazlan M, Mat Top G, Wan Ngah WZ
    Cell Mol Neurobiol, 2009 Jun;29(4):485-96.
    PMID: 19172392 DOI: 10.1007/s10571-008-9340-8
    Besides acting as potent free radical scavengers, tocopherols and tocotrienols have been known to have non-antioxidant properties such as the involvement of alpha-tocopherol (alphaT) in PKC pathway and the anti-cancer properties of gamma-tocotrienol (gammaT3). This study aims to elucidate whether protective effects shown by alphaT and gammaT3 in H(2)O(2)-induced neuron cultures have anti-apoptotic or pro-apoptotic tendency toward the initiation of neuronal apoptosis. H(2)O(2) is used to induce apoptosis in primary cerebellar neuron cultures which is attenuated by pretreatment of alphaT or gammaT3 at concentrations < or =10 microM. Similar to our previous work, gammaT3 was found to be neurotoxic at concentrations > or =100 microM, whereas alphaT showed no neurotoxicity. Cellular uptake of gammaT3 was higher than that of alphaT. Treating cells simultaneously with either gammaT3 or alphaT and with then H(2)O(2) led to higher expression of Bax and Bcl-2 than in neurons exposed to H(2)O(2) alone. Analysis of Bcl-2/Bax ratio as 'survival index' showed that both pretreatment of gammaT3 and alphaT followed by H(2)O(2) increase the 'survival index' of Bcl-2/Bax ratio compared to H(2)O(2)-treated cells, while treatment of gammaT3 alone decrease the ratio compared to unchanged Bcl2/Bax ratio of similar treatment with alphaT alone. Similar treatment of gammaT3 decreased p53 expression and activates p38 MAPK phosphorylation, whereas alphaT did not alter its expression compared to H(2)O(2)-treated cells. Treating neurons with only gammaT3 or alphaT increased the expression of Bax, Bcl-2, p53, and p38 MAPK compared to control with gammaT3 exerting stronger expression for proteins involved than alphaT. In conclusion, low doses of gammaT3 and alphaT confer neuroprotection to H(2)O(2)-treated neurons via their antioxidant mechanism but gammaT3 has stronger pro-apoptosis tendency than alphaT by activating molecules involved in the neuronal apoptotic pathway in the absence of H(2)O(2).
    Matched MeSH terms: Chromans/pharmacology
  13. Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S, Norazlina M
    Calcif. Tissue Int., 2009 Jan;84(1):65-74.
    PMID: 19020790 DOI: 10.1007/s00223-008-9190-x
    This study was conducted to determine the effectiveness of three forms of vitamin E supplements following nicotine treatment on bone histomorphometric parameters in an adult male rat model. Rats were divided into seven groups: baseline (B, killed without treatment), control (C, normal saline for 4 months), nicotine (N, nicotine for 2 months), nicotine cessation (NC), tocotrienol-enhanced fraction (TEF), gamma-tocotrienol (GTT), and alpha-tocopherol (ATF). Treatments for the NC, TEF, GTT, and ATF groups were performed in two phases. For the first 2 months they were given nicotine (7 mg/kg), and for the following 2 months nicotine administration was stopped and treatments with respective vitamin E preparations (60 mg/kg) were commenced except for the NC group, which was allowed to recover without treatment. Rats in the N and NC groups had lower trabecular bone volume, mineral appositional rate (MAR), and bone formation rate (BFR/BS) and higher single labeled surface and osteoclast surface compared to the C group. Vitamin E treatment reversed these nicotine effects. Both the TEF and GTT groups, but not the ATF group, had a significantly higher trabecular thickness but lower eroded surface (ES/BS) than the C group. The tocotrienol-treated groups had lower ES/BS than the ATF group. The GTT group showed a significantly higher MAR and BFR/BS than the TEF and ATF groups. In conclusion, nicotine induced significant bone loss, while vitamin E supplements not only reversed the effects but also stimulated bone formation significantly above baseline values. Tocotrienol was shown to be slightly superior compared to tocopherol. Thus, vitamin E, especially GTT, may have therapeutic potential to repair bone damage caused by chronic smoking.
    Matched MeSH terms: Chromans/pharmacology*
  14. Kamsani YS, Rajikin MH, Mohamed Nor Khan NA, Abdul Satar N, Chatterjee A
    Med Sci Monit Basic Res, 2013;19:87-92.
    PMID: 23462735 DOI: 10.12659/MSMBR.883822
    This study aimed to evaluate the adverse effects of various doses of nicotine and protective effects of different concentrations of gamma-tocotrienol (gamma-TCT) on in vitro embryonic development and lipid peroxidation in mice.
    Matched MeSH terms: Chromans/pharmacology*
  15. Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZ
    Molecules, 2015 Jun 03;20(6):10280-97.
    PMID: 26046324 DOI: 10.3390/molecules200610280
    Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0-150 µg/mL) and 6G (0-300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.
    Matched MeSH terms: Chromans/pharmacology*
  16. Abdul Rahman A, Mokhtar NM, Harun R, Jamal R, Wan Ngah WZ
    J Physiol Biochem, 2019 Nov;75(4):499-517.
    PMID: 31414341 DOI: 10.1007/s13105-019-00699-z
    Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.
    Matched MeSH terms: Chromans/pharmacology*
  17. Newaz MA, Nawal NN
    Clin Exp Hypertens, 1999 Nov;21(8):1297-313.
    PMID: 10574414
    The aim of this study was to determine the effects of gamma tocotrienol on lipid peroxidation and total antioxidant status of spontaneously hypertensive rats (SHR), comparing them with normal Wistar Kyoto (WKY) rats. SHR were divided into three groups and treated with different doses of gamma tocotrienol (gamma1, 15 mg/kg diet; gamma2, 30 mg/kg diet and gamma3, 150 mg/kg diet). Normal WKY and untreated SHR were used as normal (N) and hypertensive control (HC). Blood pressure were recorded every fortnightly for three months. At the end of the trial, animals were killed and measurement of plasma total antioxidant status, plasma superoxide dismutase (SOD) activity and lipid peroxide levels in plasma and blood vessels were carried out following well established methods. Study shows that lipid peroxides were significantly higher in hypertensive plasma and blood vessels compared to that of normal rats (Plasma- N: 0.06+/-0.01, HC: 0.13+/-0.008; p<0.001, B1. Vessels - N: 0.47+/-0.17, HC: 0.96+/-0.37; p<0.001). SOD activity was significantly lower in hypertensive than normal rats (N = 148.58+/-29.56 U/ml, HC = 110.08+/-14.36 U/ml; p = 0.014). After three months of antioxidant trial with gamma-tocotrienol, it was found that all the treated groups have reduced plasma lipid peroxides concentration but was only significant for group gamma1 (gamma1: 0.109+/-0.026, HC: 0.132+/-0.008; p = 0.034). On the other hand, lipid peroxides in blood vessels reduced significantly in all treated groups (gamma1; p<0.05, gamma2; p<0.001, gamma3; p<0.005). All the three treated groups showed improve total antioxidant status (p<0.001) significantly. SOD activity also showed significant improvement in all groups (gamma1: p<0.001, gamma2: p<0.05, gamma3: p<0.001). Correlation studies showed that, total antioxidant status (TAS) and SOD were significantly negatively correlated with blood pressure in normal rats (p = 0.007; p = 0.008) but not in SHR control. This correlation regained in all three groups SHR's after treatment with tocotrienol. Lipid peroxides in blood vessel and plasma showed a positive correlation with blood pressure in normal and SHR control. This correlation also remains in treated groups significantly except that in gamma3 where positive correlation with plasma lipid peroxide was not significant. In conclusion it was found that antioxidant supplement of gamma-tocotrienol may prevent development of increased blood pressure, reduce lipid peroxides in plasma and blood vessels and enhanced total antioxidant status including SOD activity.
    Matched MeSH terms: Chromans/pharmacology*
  18. Rajikin MH, Latif ES, Mar MR, Mat Top AG, Mokhtar NM
    Med. Sci. Monit., 2009 Dec;15(12):BR378-83.
    PMID: 19946227
    Previous studies have shown that nicotine enhances oxidative DNA damage and leads to increased lipid peroxidation, which affects embryo development. The present study investigated the effect of daily supplementation of gamma-tocotrienol on oocytes of nicotine-treated mice.
    Matched MeSH terms: Chromans/pharmacology*
  19. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cell Prolif, 2013 Apr;46(2):203-13.
    PMID: 23510475 DOI: 10.1111/cpr.12014
    OBJECTIVES: Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells.

    MATERIALS AND METHODS: Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits.

    RESULTS: Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis.

    CONCLUSION: Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines.

    Matched MeSH terms: Chromans/pharmacology*
  20. Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, et al.
    Arch Toxicol, 2017 Jan;91(1):509-519.
    PMID: 27180073 DOI: 10.1007/s00204-016-1730-y
    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.
    Matched MeSH terms: Chromans/pharmacology
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links