In this paper, we investigated the development of a simplified and rapid primary capture step for the recovery of M13 bacteriophage from particulate-containing feedstock. M13 bacteriophage, carrying an insert, was propagated and subsequently purified by the application of both conventional multiple steps and expanded bed anion exchange chromatography. In the conventional method, precipitation was conducted with PEG/NaCl, and centrifugation was also performed. In the single step expanded bed anion exchange adsorption, UpFront FastLine 20 (20 mm i.d.) from UpFront Chromatography was used as the contactor, while 54 ml (Ho = 15 cm) of STREAMLINE DEAE (rho = 1.2 g/cm3) from Amersham Pharmacia Biotechnology was used as the anion exchanger. The performance of the two methods were evaluated, analysed, and compared. It was demonstrated that the purification of the M13 bacteriophage, using expanded bed anion exchange adsorption, yielded the higher recovery percentage, at 82.86%. The conventional multiple step method yielded the lower recovery percentage, 36.07%. The generic application of this integrated technique has also been assessed.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
Lysozyme from crude chicken egg white (CEW) feedstock was successfully purified using a stirred fluidized bed adsorption system ion exchange chromatography where STREAMLINE SP and SP-XL high density adsorbents were selected as the adsorption carrier. The thermodynamic and kinetic studies were carried out to understand the characteristics of lysozyme adsorption by adsorbents under various conditions, including adsorption pH, temperature, lysozyme concentration and salt concentrations. Results showed that SP and SP-XL adsorbents achieved optimum lysozyme adsorption at pH 9 with capacity of ~139.77 and ~251.26 mg/mL, respectively. The optimal conditions obtained from batch studies were directly employed to operate in SFBA process. For SP-XL adsorbent, the recovery yield and purification factor of lysozyme were 93.78% and ~40 folds, respectively. For SP adsorbent, lysozyme can be eluted ~100% with purification factor of ~26 folds. These two adsorbents are highly suitable for use in direct recovery of lysozyme from crude CEW.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
A rapid, easy, and sensitive method is described in this paper for the assay of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase, a key enzyme in cholesterol biosynthesis. [14C]HMG CoA was used as the substrate and the product formed, i.e., [14C]mevalonate, was allowed to be converted to its lactone form (mevalonolactone) in the presence of HCl. The reaction mixture was applied to a column containing an anionic exchanger. The column was made up of QAE-Sephadex (A25, formate form) packed to a height of 4 cm in Pasteur pipets. Under these conditions, mevalonolactone was not retained by the column and was eluted with ammonium formate solution while HMG CoA, being negatively charged, was retained by the gel and eluted by HCl above 0.05 M. Determination of the amount of radioactivity in mevalonolactone was then used to quantitate the activity of HMG CoA reductase. This assay has been successfully used for determining the activity of this enzyme in a microsomal fraction prepared from the liver of the rat.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
A stirred fluidized bed (SFB) ion exchange chromatography was successfully applied in the direct recovery of recombinant enhanced green fluorescent protein (EGFP) from the unclarified Escherichia coli homogenate. Optimal conditions for both adsorption and elution processes were determined from the packed-bed adsorption systems conducted at a small scale using the clarified cell homogenate. The maximal adsorption capacity and dissociation constant for EGFP-adsorbent complex were found to be 6.3 mg/mL and 1.3 × 10-3 mg/mL, respectively. In an optimal elution of EGFP with 0.2 M of NaCl solution (pH 9) and at 200 cm/h, the recovery percent of the EGFP was approximately 93%. The performances of SFB chromatography for direct recovery of EGFP was also evaluated under different loading volumes (50-200 mL) of crude cell homogenate. The single-step purification of EGFP by SFB recorded in a high yield (95-98%) and a satisfactory purification factor (~3 folds) of EGFP from the cell homogenate at 200 rpm of rotating speed.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
Glycated hemoglobin, measured as HbA1c is used as an index of mean glycemia in diabetic patients over the preceding 2-3 months. Various assay methods are used to measure HbA1c and many factors may interfere with its measurement according to assay method used, causing falsely high or low results.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
Hepatitis B core antigen (HBcAg) is an important serological marker used in the diagnosis of hepatitis B virus (HBV) infections. In the current study, a fast and efficient preparative purification protocol for truncated HBcAg from Escherichia coli disruptate was developed. The recombinant HBcAg was first captured by anion exchange expanded bed adsorption chromatography integrated with a cell disruption process. This online capture process has shortened the process time and eliminated the "hold-up" period that may be detrimental to the quality of target protein. The eluted product from the expanded bed adsorption chromatography was subsequently purified using size-exclusion chromatography. The results showed that this novel purification protocol achieved a recovery yield of 45.1% with a product purity of 88.2%, which corresponds to a purification factor of 4.5. The recovered HBcAg is still biologically active as shown by ELISA test.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
Poly(oligo(ethylene glycol) methacrylate) (POEGMA), an inert polymer was grafted onto an anion exchange adsorbent for the exclusion of relatively larger hepatitis B virus-like particles (HB-VLPs) from the anion exchange ligand (Q) and at the same time this process allowed the selective adsorption of smaller size Escherichia coli host cell proteins (HCPs). The chain lengths of the POEGMA grafted were modulated by varying the amount of monomers used in the polymer grafting. The purification factor and yield of the HB-VLPs obtained from the flow-through of negative chromatography were 2.3 and 66.0±3.1%, respectively, when shorter chain length of POEGMA (SQ) was grafted. Adsorbent grafted with longer chain of POEGMA (LQ) excluded some HCPs that are larger in size together with the HB-VLPs, reducing the purity of the recovered HB-VLPs. Further heat-treatment of the flow-through pool from SQ followed by centrifugation increased the purity of heat stable HB-VLPs to 87.5±1.1%. Heat-treatment of the flow through sample resulted in thermal denaturation and aggregation of HCPs, while the heat stable HB-VLPs still remained intact as observed under a transmission electron microscope. The performance of the negative chromatography together with heat treatment in the purification of HB-VLPs is far better than the reported bind-and-elute techniques.
Matched MeSH terms: Chromatography, Ion Exchange/methods
This paper describes a refinement in the purification step that facilitated the downstream recovery of high purity BmR1 recombinant protein, which is a protein used as a test reagent in the commercialized rapid tests for detection of lymphac filariasis i.e. Brugia Rapid™ and panLF rapid™. Purification was performed by immobilized metal affinity chromatography (IMAC), followed by ion exchange chromatography (IEX). Results showed that a total of 10.27 mg of BmR1 was obtained when IMAC was performed using 20 mM of imidazole and 5 column volume of wash buffer containing 500 mM of NaCl. Purity of the target protein was enhanced when buffer at pH 5.8 was used during the IEX. Two proteins that recurrently appeared below the BmR1 recombinant protein were identified by mass-spectrometry analysis as the same protein, thus they were probably degradation products of BmR1. These strategies improve purity of the target protein to be used in applications such as production of aptamers and monoclonal antibodies.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinity chromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1) for the removal of C-terminus and N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidine tag of MBP-His(6) by Factor Xa and HT15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-His(6) to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. On-column tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-I system was superior to the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-I system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-I (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-I digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-I digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-I for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions.
Matched MeSH terms: Chromatography, Ion Exchange/methods
A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
Matched MeSH terms: Chromatography, Ion Exchange/methods*
NP(Δc375) is a truncated version of the nucleocapsid protein of Newcastle disease virus (NDV) which self-assembles into a long helical structure. A packed bed anion exchange chromatography (PB-AEC), SepFastTM Supor Q pre-packed column, was used to purify NP(Δc375) from clarified feedstock. This PB-AEC column adsorbed 76.2% of NP(Δc375) from the clarified feedstock. About 67.5% of the adsorbed NP(Δc375) was successfully eluted from the column by applying 50 mM Tris-HCl elution buffer supplemented with 0.5 M NaCl at pH 7. Thus, a recovery yield of 51.4% with a purity of 76.7% which corresponds to a purification factor of 6.5 was achieved in this PB-AEC operation. Electron microscopic analysis revealed that the helical structure of the NP(Δc375) purified by SepFast(TM) Supor Q pre-packed column was as long as 490 nm and 22-24 nm in diameter. The antigenicity of the purified NP(Δc375) was confirmed by enzyme-linked immunosorbent assay.
Matched MeSH terms: Chromatography, Ion Exchange/methods*