METHODS: Using as little as 20 ng of DNA from formalin-fixed paraffin-embedded tissues, we analysed 25 previously characterised gliomas for multi-locus copy number losses (CNLs) on 1p and 19q, including 11 oligodendrogliomas (ODG) and 14 non-oligodendroglial (non-ODG) controls. Fluorescence in-situ hybridisation (FISH) was used as a reference standard.
RESULTS: The software confidently detected combined contiguous 1p/19q CNLs in 11/11 ODGs (100% sensitivity), using a copy number cut-off of ≤1.5 and a minimum of 10 amplicons covering the regions. Only partial non-specific losses were identified in non-ODGs (100% specificity). Copy number averages of ODG and non-ODG groups were significantly different (p<0.001). NGS was concordant with FISH and was superior to it in distinguishing partial from contiguous losses indicative of whole-arm chromosomal deletion.
CONCLUSIONS: This commercial NGS panel, along with the standard Ion Torrent algorithm, accurately detected 1p/19q losses in ODG samples, obviating the need for specialised custom-made informatic analyses. This can easily be incorporated into routine glioma workflow as an alternative to FISH.
MATERIALS AND METHODS: Silymarin was isolated from seeds of milk thistle. Various genotoxicity bioassays of silymarin were performed using mice. First, the bone marrow cell proliferation was estimated by calculating mitotic index. Second, the chromosomal abnormalities in mice bone marrow cells were studied. Third, micronucleated polychromatic erythrocytes (MPE) test and in vivo activation of sister chromatid exchanges (SCEs) were carried out in mice bone marrow cells. Finally, primary spermatocytes were analyzed to estimate genotoxic effect of silymarin on germ cells.
RESULTS: We found that silymarin is capable of inducing a significant increase (P ≤ 0.05) in cell proliferation of bone marrow cells. There is no increase in chromosomal aberrations following silymarin treatments. Results clearly showed that it significantly (P ≤ 0.05) decreased the MPE. Likewise, it was found to be a negative inducer of SCEs. It decreased in total abnormal metaphase, SCEs, MPE, and aberrant diakinesis.
CONCLUSION: The results demonstrated that silymarin has a strong anticlastogenic activity upon mice genome in somatic and germ cells, indicating its safe use as a medicinal substance. Furthermore, it is not only safe but also has protective effect from clastogens.