Displaying all 10 publications

Abstract:
Sort:
  1. Rashid MH, Hossain MA, Kashem MA, Kumar S, Rafii MY, Latif MA
    ScientificWorldJournal, 2014;2014:639246.
    PMID: 24723819 DOI: 10.1155/2014/639246
    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1-9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.
    Matched MeSH terms: Cicer/microbiology*
  2. Krishna LS, Yuzir A, Yuvaraja G, Ashokkumar V
    Int J Phytoremediation, 2017 May 04;19(5):431-438.
    PMID: 27739901 DOI: 10.1080/15226514.2016.1244161
    The feasibility for the removal of Acid Blue25 (AB25) by Bengal gram fruit shell (BGFS), an agricultural by-product, has been investigated as an alternative for high-cost adsorbents. The impact of various experimental parameters such as dose, different dye concentration, solution pH, and temperature on the removal of Acid Blue25 (AB25) has been studied under the batch mode of operation. pH is a significant impact on the sorption of AB25 onto BGFS. The maximum removal of AB25 was achieved at a pH of 2 (83.84%). The optimum dose of biosorbent was selected as 200 mg for the removal of AB25 onto BGFS. Kinetic studies reveal that equilibrium reached within 180 minutes. Biosorption kinetics has been described by Lagergren equation and biosorption isotherms by classical Langmuir and Freundlich models. Equilibrium data were found to fit well with the Langmuir and Freundlich models, and the maximum monolayer biosorption capacity was 29.41 mg g(-1) of AB25 onto BGFS. The kinetic studies indicated that the pseudo-second-order (PSO) model fitted the experimental data well. In addition, thermodynamic parameters have been calculated. The biosorption process was spontaneous and exothermic in nature with negative values of ΔG° (-1.6031 to -0.1089 kJ mol(-1)) and ΔH° (-16.7920 kJ mol(-1)). The negative ΔG° indicates the feasibility of physical biosorption process. The results indicate that BGFS could be used as an eco-friendly and cost-effective biosorbent for the removal of AB25 from aqueous solution.
    Matched MeSH terms: Cicer/metabolism*
  3. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, et al.
    Nat Plants, 2018 Jan;4(1):23-29.
    PMID: 29292376 DOI: 10.1038/s41477-017-0083-8
    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
    Matched MeSH terms: Cicer/genetics*
  4. Tan, C.X., Azrina, A.
    MyJurnal
    Beans are distinctive among a diverse and broad class of legumes. Certain health products claimed their products are high in dietary fibers and total phenolic content (TPC) because they applied bean combinations. This study aimed to determine the dietary fibers and TPC of raw and cooked beans and its combinations. Individual beans studied were kidney bean, mung bean and chickpea. Bean combinations were done by mixing each of the homogenized beans flour in the ratio of 1:1 (w/w) and 1:1:1 (w/w/w). Dietary fibers were determined using enzymaticgravimetrical method whereas TPC was determined spectrophotometrically. Results showed the insoluble dietary fiber (IDF), soluble dietary fiber (SDF), total dietary fiber (TDF) and TPC for individual raw beans varied from 20.52 to 26.61 g/100 g, 1.20 to 2.45 g/100 g, 22.08 to 27.81 g/100 g and 0.48 to 1.04 mg GAE/g, respectively. For raw bean combinations, the IDF, SDF, TDF and TPC varied from 20.74 to 23.96 g/100 g, 2.3 to 2.50 g/100 g, 23.05 to 26.46 g/100 g and 0.80 to 0.85 mg GAE/g, respectively. No significant different (p > 0.05) in IDF and SDF for raw bean combinations and individual raw beans. Meanwhile, certain raw bean combinations contained significant higher (p < 0.05) TDF and TPC than individual raw beans. The IDF, SDF, TDF and TPC for individual cooked beans varied from 14.49 to 26.30 g/100 g, 1.40 to 2.02 g/100 g, 15.88 to 28.31 g/100 g and 0.57 to 1.20 mg GAE/g, respectively. For cooked bean combinations, the IDF, SDF, TDF and TPC varied from 15.73 to 23.03 g/100 g, 1.73 to 2.36 g/100 g, 17.46 to 24.95 g/100 g and 0.61 to 1.08 mg GAE/g, respectively. After cooking, the IDF, SDF, TDF and TPC of certain beans combinations were significantly higher (p < 0.05) than individual beans. This study supports the proposal that bean combinations can possibly be used as a method to increase the amount of dietary fibers and TPC.
    Matched MeSH terms: Cicer
  5. Wong KS, Lee L, Yeo LY, Tan MK
    R Soc Open Sci, 2019 Mar;6(3):181560.
    PMID: 31032012 DOI: 10.1098/rsos.181560
    Seeds, which are high in protein and essential nutrients, must go through a hydration process before consumption. The ability to rapidly increase water absorption can significantly reduce the soaking time as well as the amount of energy needed for cooking seeds. Many studies in the literature employ high-power (102 W) low-frequency (104 Hz) ultrasound; although their results are very promising where more than 100% increase in water content can be obtained between the treated and untreated seeds, the high-power and low-frequency ultrasound often causes acoustic cavitation under high intensity, which can severely disrupt the cell walls and damage the seeds. In our study, however, we demonstrate that treating the seeds via a miniature surface acoustic wave device, which operates at low-power (100 W) and high-frequency (107 Hz) range, gives rise to a higher water absorption rate without the acoustic cavitations. By comparing the water content between the treated and untreated seeds, an increase of up to 2600% (for chickpeas) and 6350% (for mung bean) can be obtained after 60 min. A significantly higher water absorption in mung beans can be attributed to the larger pore size when compared with the acoustic wavelength in water, enabling an efficient transmission of acoustic wave inside the pores. Our results also indicate that the germination time can be reduced by half for treated seeds as compared to the untreated seeds.
    Matched MeSH terms: Cicer
  6. Noor Aziah, A.A., Mohamad Noor, A.Y., Ho, L.H.
    MyJurnal
    This study was to investigate the effects of wheat flour substitution with legume flour (mung bean and chick pea) in cookies in terms of the physicochemical and organoleptic properties. Three formulations of cookies were prepared from (a) Control (100% wheat flour), (b) Mung bean (50% wheat flour + 35% mung bean flour + 15% corn flour) and (c) Chickpea (50% wheat flour + 35% chickpea flour + 15% corn flour). The physicochemical and organoleptic attributes of the three types of cookie were evaluated. Results showed significant different (p
    Matched MeSH terms: Cicer
  7. Rahamdad Khan, Ijaz Ahmad Khan
    Sains Malaysiana, 2015;44:25-30.
    In a laboratory trial three chickpea varieties viz, Karak-I, Karak-III and Shenghar were tested against the phytotoxicity of five weed species: Parthenium hysterophorus L., Phragmites australis (Cav.) Trin., Datura alba L., Cyperus rotundus L. and Convolvulus arvensis L.in January 2013. The weed extracts were prepared at the rate of 120 g/L (w/v) after shade dry. The results indicated highly significant inhibitory effect of all the tested weed species on the chickpea varieties. The results also showed that the chickpea variety Karak-III was more susceptible to the phytotoxcity of the tested weed extracts. Among the extract, C. arvensis proved much toxic in term of inhibition of germination by giving only 43.33% germination in comparison with control where 97.50% germination was recorded. On the other hand, the effect of P. australis extract was found a little stimulator by speeding the seed germination in all varieties and giving a low (2.21) mean germination time (MGT) value. From the current results it can be concluded that the infestation of C. arvensis can pollute the soil by accumulating toxic chemicals that leads to the germination failure and growth suppression in chickpea. Therefore, the prevention and removal of C. arvensis in the chickpea growing areas could be recommended. In addition, P. australis must be tested against chickpea weeds (chickpea varieties withstand against its phytotoxcity), so that it can be popularized as bioherbicide in chickpea if it gave promising results in controlling chickpea weeds.
    Matched MeSH terms: Cicer
  8. Choi WC, Parr T, Lim YS
    J Food Sci Technol, 2019 Jan;56(1):281-289.
    PMID: 30728570 DOI: 10.1007/s13197-018-3488-0
    The global trend in increasing plant-based protein diets due to health and ideological reasons, has created an increased demand for food legumes that exceeds current production. To meet this demand, it is timely to reduce relying solely on soybean, and explore the potential of the underutilised legumes that are cultivated regionally. Underutilised legumes are rich in protein, carbohydrates and other nutrients that are essential for consumer. However, relatively little is known about their anti-nutritional properties and processing methods. Anti-nutritional factors (ANFs) such as enzyme inhibitors are prevalent in legumes and may interfere with digestibility and nutrient absorption. Nevertheless, an optimised food processing method will overcome this challenge and warrant a safe inclusion of legume in plant-based protein diets. Hence current study aimed to optimise the food processing methods (soaking, wet heating, autoclaving and freezing) and evaluate their efficiency in eliminating the enzyme inhibitors [trypsin, chymotrypsin (CIA) and α-amylase (AIA) inhibitors] present in seven underutilised legumes. Current study showed that autoclaving at 121 °C for 15 min reduced the AIA in all underutilised legumes tested. The AIA and CIA of bambara groundnut were successfully inactivated by wet heating at 50 °C for 60 min, and by autoclaving at 121 °C for 15 min. While the CIA of chickpea was successfully inactivated by freezing at - 80 °C for 24 h.
    Matched MeSH terms: Cicer
  9. Mahmodi F, Kadir JB, Nasehi A, Puteh A, Soleimani N
    Plant Dis, 2013 Nov;97(11):1507.
    PMID: 30708462 DOI: 10.1094/PDIS-03-13-0231-PDN
    At least nine Colletotrichum species, particularly Colletotrichum truncatum, have been recorded on legumes worldwide (1). In June 2010, samples of chickpea leaflets showing leaf spot disease symptoms were collected from experimental farms in Ladang Dua, Selangor state of Malaysia. Tan lesions with darker brown borders were observed on leaflets and were associated with premature leaf drop. Stem lesions initially appeared on the lower parts of stems and later progressed higher in the plant. Lesions often girdled the stem and caused severe dieback. Abundant acervuli developed in the lesions visible as black dots. Foliar lesions were removed, surface sterilized in 1% sodium hypochlorite for 2 min, rinsed twice with distilled water, dried on sterilized tissue paper, plated on PDA plates, and incubated at 25°C (3). Three isolates of the fungus were obtained and identified as C. truncatum on the basis of morphological characteristics (2). The isolates were deposited in the University Putra of Malaysia Culture Collection (UPMCC). Colony characteristics on PDA varied from greyish white to dark in color and exhibited mycelial growth with sparse acervuli. The isolates produced both sclerotia and setae in culture. Conidia (mean ± SD = 22 ± 0.83 × 3.6 ± 0.08 μm, L/W ratio = 6.1) produced in acervuli were falcate, hyaline, and aseptate, with tapering towards the acute and greatly curved apex. The conidial mass color varied from pale buff to saffron. Isolates produced simple to slightly lobed, mainly short clavate appressoria (mean ± SD = 9.60 ± 0.36 × 6.67 ± 0.29 μm, L/W ratio = 1.45). Amplification and sequence analysis of coding and none-coding regions of the ITS-rDNA (GenBank Accession JX971160), actin (JX975392), β-tubulin (KC109495), histone (KC109535), chitin synthase (KC109575), and glyceraldehyde-3-phosphate dehydrogenase (KC109615) obtained from the representative isolate, CTM37, aligned with deposited sequences from GenBank and revealed 99 to 100% sequence identity with C. truncatum strains (AJ301945, KC110827, GQ849442, GU228081, GU228359, and HM131501 from GenBank). Isolate CTM37 was used to test pathogenicity in the greenhouse. Five chickpea seeds of cultivar ILC-1929 were sown per pot in four replications. Ten days after seedling emergence, plants were inoculated with a spore suspension (concentration = 106 conidia ml-1) and check pots were sprayed with distilled water. After inoculation, the plants were covered with plastic bags for 48 h and kept at 28 to 33°C and >90% RH. After incubation, the plastic bags were removed and the plants were placed on greenhouse benches and monitored daily for symptom development (3). One week after inoculation, typical anthracnose symptoms developed on the leaves and stems of inoculated plants including acervuli formation, but not on the checks. A fungus with the same colony and conidial morphology as CTM37 was recovered from the lesions on the inoculated plants. The experiment was repeated twice. The ability to accurately diagnose Colletotrichum species is vital for the implementation of effective disease control and quarantine measures. We believe this is the first report of C. truncatum causing anthracnose on chickpea in Malaysia. References: (1) B. D. Gossen et al. Can. J. Plant Pathol. 31:65, 2009. (2) B. C. Sutton. The Genus Glomerella and its anamorph Colletotrichum. CAB International, Wallingford. UK. 1992. (3) P. P. Than et al. Plant Pathol. 57:562, 2008. ERRATUM: A correction was made to this Disease Note on May 19, 2014. The author N. Soleimani was added.
    Matched MeSH terms: Cicer
  10. Pui, L.P., Abdulkarim, S.M., Ghazali, H.M.
    MyJurnal
    5'-Phosphodiesterase (5'-PDE) is an enzyme that hydrolyses RNA to form 5'-inosine monophosphate (5'-IMP) and 5'-guanosine monophosphate (5'-GMP), which function as flavour enhancers. Selection of the best producer of 5'-PDE was made by determining the activity of the enzyme in six seeds that have been germinated, namely mung bean (Vigna radiate), soybean (Glycine max), adzuki/red bean (Vigna angularis L.), chick pea (Cicer arietinum), black eye pea (Vigna unguiculata) and petai (Parkia speciosa). Seeds that were not germinated acted as the control. In order to ensure there is no contamination from potential 5'-PDE-producing microorganisms during germination, microbial growth was reduced by using different surface sterilizing treatments where the seeds were soaked in 100 mL solution containing different concentrations of sodium hypochlorite (with or without 0.05% sodium azide) for 5 minutes before rinsing it five times with sterilized distilled water (total 500 mL). The seeds were observed every day for 3 days and the best surface sterilizing treatment was selected based on absence of mold growth and the effects on hypocotyl length. Sodium hypochlorite at 0.3% (v/v) concentration was able to inhibit mold growth in adzuki bean, soybean and chickpea. On the other hand, only 0.1% (v/v) sodium hypochlorite was needed to inhibit mold growth in black eye pea and petai, while mung bean required 0.05% (v/v) sodium hypochlorite to inhibit mold growth. Under these conditions, the growth of hypocotyl (hypocotyls length) was only slightly affected compared to the control. 5'-PDE was extracted from seeds that have been germinated for 24 hours and their control (ungerminated seeds) by homogenization in a blender with 400 mL of 50 mM acetate buffer, pH 4.5. After that, the homogenates were stirred for 30 min and the centrifuged at 9000 rpm for 15 min at 10°C. 5'-PDE activity was determined using thymidine 5'-monophosphate p-nitrophenyl ester as substrate at pH 7.0 and 55°C. The formation of nucleotide monophosphates, the products of reaction, was determined at 405 nm. As a strong presence of phosphomonoesterase (PME) will reduce the yield of nucleotide monophosphates as the enzyme hydrolyzes these products into nucleosides and orthophosphate, PME activity was also determined using p-nitrophenyl phosphate as the substrate at 60°C and pH 5.0. Thus, the seed with the highest 5'-PDE activity and a low PME activity can be selected. Germinated adzuki bean was found to have the highest 5'-PDE activity (0.59 µmol p-nitrophenol/min/mg protein) among the germinated seeds. A time-course study indicated that the level of 5'-PDE in adzuki bean increased with time of germination until 15 hours (0.69 µmol p-nitrophenol/min/mg protein), after which the acitivity decreased until it reached the basal level (0.44 µmol p-nitrophenol/min/mg protein) at 72 hours. On the other hand, PME in the bean was the highest at 9 h germination (0.98 µmol p-nitrophenol/min/mg protein). In general, controls have very low basal level of 5'-PDE activity (0.18- 0.42 µmol p-nitrophenol/min/mg protein).
    Matched MeSH terms: Cicer
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links