Displaying publications 1 - 20 of 142 in total

Abstract:
Sort:
  1. Jamsari AF, Muchlisin ZA, Musri M, Siti Azizah MN
    Genet. Mol. Res., 2010;9(3):1836-43.
    PMID: 20845309 DOI: 10.4238/vol9-3gmr933
    Anabas testudineus (Anabantidae) is an important food fish in Southeast Asia. We analyzed the mitochondrial DNA control region sequence data to evaluate the genetic variability and population structure of this species. Sixty specimens were collected from four populations in Sumatra and two populations in Peninsular Malaysia. We found a very low level of genetic variability, with five of the six populations exhibiting total absence of genetic variation. Based on analysis of molecular variance, 84.72% of the total variation was among populations and 15.28% within populations. A geographical division based on FST values indicated highly significant genetic differentiation among populations from the four drainage systems: Aceh, Sumatra Utara, Pulau Pinang, and Terengganu (FST ranging from 0.633 to 1.000). No phylogeographic relationships among populations were detected, despite the generation of four distinct clades in a neighbor-joining phylogenetic tree.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  2. Chen W, Zhang J, Geng Z, Zhu D
    Yi Chuan Xue Bao, 1994;21(3):179-87.
    PMID: 7917431
    We report the fact that D. albomicans invaded into Shanghai suddenly in the autumn of 1991. Using 9 restriction enzymes, we analyse the RFLPs of mitochondrial DNA of 29 isofemale lines belonging to 4 populations of Shanghai, Jiading, Qinpu and Nanhui. We find that all 29 haplotypes are different from each other. Comparing with the populations of Canton, Kunming, Sanhutan (Taiwan), Sumoto (Japan), and Kuala Lumper (Malaysia), we come to the conclusion that D. albomicans caught in Shanghai and areas nearby is from a few of places in the south of China-mainland. This conclusion agrees with the viewpoint that this species is on the speciation stage of migration towards north. We also discuss the mtDNA polymorphism within the species.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  3. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423512 DOI: 10.3109/19401736.2014.982587
    The mitochondrial genome sequence of the ghost crab, Ocypode ceratophthalmus, is documented (GenBank accession number: LN611669) in this article. This is the first mitogenome for the family Ocypodidae and the second for the order Ocypodoidea. Ocypode ceratophthalmus has a mitogenome of 15,564 base pairs consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the O. ceratophthalmus mitogenome is 35.78% for T, 19.36% for C, 33.73% for A and 11.13% for G, with an AT bias of 69.51% and the gene order is the typical arrangement for brachyuran crabs.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  4. Zawani MK, Abu HA, Sazaly AB, Zary SY, Darlina MN
    Genet. Mol. Res., 2014;13(4):8184-96.
    PMID: 25299203 DOI: 10.4238/2014.October.7.13
    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  5. Adibah AB, Darlina MN
    Genet. Mol. Res., 2014;13(4):8094-104.
    PMID: 25299194 DOI: 10.4238/2014.October.7.4
    For centuries, morphology-based fish identification has been applied without molecular evaluation. Many studies showed that specimens with a similar morphology are frequently found to be quite genetically distinct. One of the fish species that still remains taxonomically problematic is a commercial snapper species, Lutjanus johnii. Because of morphological ambiguities among local fish taxonomists in Malaysia, we examined the ability of the cytochrome oxidase I (COI) gene to genetically examine the taxonomic status of L. johnii. A 626-base pair COI region was successfully amplified and aligned with conspecific sequences that were retrieved from GenBank. The phylogenetic tree obtained showed two major clusters; the first cluster consists of L. johnii from Straits of Malacca, Thailand, Australia, and China while the second cluster comprises L. johnii from China and India. The latter group showed sequence divergence greater than 3.5%. After observing this, we suspected that there might be a cryptic species between the South China Sea and Indian Ocean. This is the first molecular report concerning the commercial species of snapper, L. johnii, in Malaysia, which had only gained provisional recognition from morphological examination.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  6. Smith DG, Ng J, George D, Trask JS, Houghton P, Singh B, et al.
    Am. J. Phys. Anthropol., 2014 Sep;155(1):136-48.
    PMID: 24979664 DOI: 10.1002/ajpa.22564
    Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co-exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  7. Gan HM, Tan MH, Thai BT, Austin CM
    PMID: 24617474 DOI: 10.3109/19401736.2014.892104
    The complete mitochondrial genome of the commercially important snout otter clam Lutraria rhynchaena was obtained from low-coverage shotgun sequencing data on the MiSeq platform. The L. rhynchaena mitogenome has 16,927 base pairs (69% A + T content) and made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 953 bp non-coding AT-rich region. This is the first mitogenome to be sequenced from the genus Lutraria, and the seventh to be reported for the family Mactridae.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  8. Esa Y, Abdul Rahim KA
    Biomed Res Int, 2013;2013:170980.
    PMID: 24455674 DOI: 10.1155/2013/170980
    This study examines the population genetic structure of Tor tambroides, an important freshwater fish species in Malaysia, using fifteen polymorphic microsatellite loci and sequencing of 464 base pairs of the mitochondrial cytochrome c oxidase I (COI) gene. A total of 152 mahseer samples were collected from eight populations throughout the Malaysia river system. Microsatellites results found high levels of intrapopulation variations, but mitochondrial COI results found high levels of interpopulations differentiation. The possible reasons for their discrepancies might be the varying influence of genetic drift on each marker or the small sample sizes used in most of the populations. The Kelantan population showed very low levels of genetic variations using both mitochondrial and microsatellite analyses. Phylogenetic analysis of the COI gene found a unique haplotype (ER8∗), possibly representing a cryptic lineage of T. douronensis, from the Endau-Rompin population. Nevertheless, the inclusion of nuclear microsatellite analyses could not fully resolve the genetic identity of haplotype ER8∗ in the present study. Overall, the findings showed a serious need for more comprehensive and larger scale samplings, especially in remote river systems, in combination with molecular analyses using multiple markers, in order to discover more cryptic lineages or undescribed "genetic species" of mahseer.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  9. Schutze MK, Krosch MN, Armstrong KF, Chapman TA, Englezou A, Chomič A, et al.
    BMC Evol. Biol., 2012;12:130.
    PMID: 22846393
    Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  10. Golding RE
    Mol Phylogenet Evol, 2012 Apr;63(1):72-81.
    PMID: 22210412 DOI: 10.1016/j.ympev.2011.12.016
    Amphiboloidea is a small but widespread group of snails found exclusively, and often abundantly, in mudflat and associated salt marsh or mangrove habitat. This study uses molecular data from three loci (COI, 16S and 28S) to infer phylogenetic relationships in Amphiboloidea and examine its position in Euthyneura. All but two of the named extant species of Amphiboloidea and additional undescribed taxa from across Southeast Asia and the Arabian Gulf were sampled. In contrast to the current morphology-based classification dividing Amphiboloidea into three families, analysis of molecular data supports revision of the classification to comprise two families. Maningrididae is a monotypic family basal to Amphibolidae, which is revised to comprise three subfamilies: Amphibolinae, Phallomedusinae and Salinatorinae. Sequence divergence between Asian populations of Naranjia is relatively large and possibly indicative of species complexes divergent across the Strait of Malacca. Salinatorrosacea and Salinator burmana do not cluster with other Salinator species, and require generic reassignment. In addition, sequences were obtained from an undescribed species of Lactiforis from the Malay Peninsula. Reconstruction of ancestral distributions indicates a plesiomorphic distribution and centre of origin in Australasia, with two genera subsequently diversifying throughout Asia. Increasing the sampling density of amphiboloid taxa in a phylogenetic analysis of Euthyneura did not resolve the identity of the sister taxon to Amphibolidae, but confirmed its inclusion in Pulmonata/Panpulmonata.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  11. Vun VF, Mahani MC, Lakim M, Ampeng A, Md-Zain BM
    Genet. Mol. Res., 2011;10(1):368-81.
    PMID: 21365553 DOI: 10.4238/vol10-1gmr1048
    Little is known about the classification and phylogenetic relationships of the leaf monkeys (Presbytis). We analyzed mitochondrial DNA sequences of cytochrome b (Cyt b) and 12S rRNA to determine the phylogenetic relationships of the genus Presbytis. Gene fragments of 388 and 371 bp of Cyt b and 12S rRNA, respectively, were sequenced from samples of Presbytis melalophos (subspecies femoralis, siamensis, robinsoni, and chrysomelas), P. rubicunda and P. hosei. The genus Trachypithecus (Cercopithecidae) was used as an outgroup. The Cyt b NJ and MP phylogeny trees showed P. m. chrysomelas to be the most primitive, followed by P. hosei, whereas 12S rRNA tree topology only indicated that these two species have close relationships with the other members of the genus. In our analysis, chrysomelas, previously classified as a subspecies of P. melalophos, was not included in either the P. m. femoralis clade or the P. m. siamensis clade. Whether or not there should be a separation at the species level remains to be clarified. The tree topologies also showed that P. m. siamensis is paraphyletic with P. m. robinsoni, and P. m. femoralis with P. rubicunda, in two different clades. Cyt b and 12S rRNA are good gene candidates for the study of phylogenetic relationships at the species level. However, the systematic relationships of some subspecies in this genus remain unclear.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  12. Kurniawan N, Islam MM, Djong TH, Igawa T, Daicus MB, Yong HS, et al.
    Zoolog Sci, 2010 Mar;27(3):222-33.
    PMID: 20192690 DOI: 10.2108/zsj.27.222
    To elucidate genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries, allozyme and molecular analyses were carried out using 131 frogs collected from 24 populations in Indonesia, Thailand, Bangladesh, Malaysia, and the Philippines. In the allozymic survey, seventeen enzymatic loci were examined for 92 frogs from eight representative localities. The results showed that F. cancrivora is subdivided into two main groups, the mangrove type and the large- plus Pelabuhan ratu types. The average Nel's genetic distance between the two groups was 0.535. Molecular phylogenetic trees based on nucleotide sequences of the 16S rRNA and Cyt b genes and constructed with the ML, MP, NJ, and BI methods also showed that the individuals of F. cancrivora analyzed comprised two clades, the mangrove type and the large plus Pelabuhan ratu / Sulawesi types, the latter further split into two subclades, the large type and the Pelabuhan ratu / Sulawesi type. The geographical distribution of individuals of the three F. cancrivora types was examined. Ten Individuals from Bangladesh, Thailand, and the Philippines represented the mangrove type; 34 Individuals from Malaysia and Indonesia represented the large type; and 11 individuals from Indonesia represented the Pelabuhan ratu / Sulawesi type. Average sequence divergences among the three types were 5.78-10.22% for the 16S and 12.88-16.38% for Cyt b. Our results suggest that each of the three types can be regarded as a distinct species.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  13. Ryan JR, Esa YB
    Zoolog Sci, 2006 Oct;23(10):893-901.
    PMID: 17116992
    This study examined 396 base pairs of the mitochondrial cytochrome b gene from 110 individuals belonging to the genus Hampala, a group of freshwater cyprinids that inhabit Southeast Asia. The samples were taken from various locations throughout Sarawak, Sabah, and peninsular Malaysia. The nucleotide sequences were subjected to phylogenetic analyses by using the neighbor-joining, maximum parsimony, and maximum likelihood methods. All three methods revealed the reciprocally monophyletic relationship of Hampala macrolepidota to the other Hampala forms, thus strongly supporting its status as a distinct species. Phylogenetic analysis also discovered the existence of two H. bimaculata lineages endemic to Borneo: (1) a newly identified species from the southern and central part of Sarawak assigned as H. bimaculata Type A and (2) the previously described H. bimaculata from northern Sarawak and the west coast of Sabah assigned as H. bimaculata Type B. However, the status of H. sabana and an intermediate form were not elucidated. The results suggest that the intermediate form from the Tawau population is actually a subpopulation of H. sabana, while the highly divergent intermediate form from Kalabakan could represent a cryptic species. The sharing of H. macrolepidota haplotypes in the southern peninsular Malaysia and southern and central Sarawak samples (Hm1 and Hm2) reflected the recent disconnection of the two regions, during the late Pleistocene. Overall, the partial sequence of the mitochondrial cytochrome b gene was useful for resolving the phylogenetic relationships among Hampala fishes in Malaysia.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  14. van Holst Pellekaan SM, Ingman M, Roberts-Thomson J, Harding RM
    Am. J. Phys. Anthropol., 2006 Oct;131(2):282-94.
    PMID: 16596590
    We classified diversity in eight new complete mitochondrial genome sequences and 41 partial sequences from living Aboriginal Australians into five haplogroups. Haplogroup AuB belongs to global lineage M, and AuA, AuC, AuD, and AuE to N. Within N, we recognize subdivisions, assigning AuA to haplogroup S, AuD to haplogroup O, AuC to P4, and AuE to P8. On available evidence, (S)AuA and (M)AuB are widespread in Australia. (P4)AuC is found in the Riverine region of western New South Wales, and was identified by others in northern Australia. (O)AuD and (P8)AuE were clearly identified only from central Australia. Our eight Australian full mt genome sequences, combined with 20 others (Ingman and Gyllensten 2003 Genome Res. 13:1600-1606) and compared with full mt genome sequences from regions to the north that include Papua New Guinea, Malaya, and Andaman and Nicobar Islands, show that ancestral connections between regions are deep and limited to clustering at the level of the N and M macrohaplogroups. The Australian-specific distribution of the five haplogroups identified indicates genetic isolation over a long period. Ancestral connections within Australia are deeper than those reflected by known linguistic or culturally based affinities. Applying a coalescence analysis to a gene tree for the coding regions of the eight genomic sequences, we made estimates of time depth that support a continuity of presence for the descendants of a founding population already established by 40,000 years ago.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  15. Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH
    Mol Phylogenet Evol, 2004 Dec;33(3):764-81.
    PMID: 15522802
    Taxonomic relationships within the Old World fruit bat genus, Cynopterus, have been equivocal for the better part of a century. While nomenclature has been revised multiple times on the basis of phenotypic characters, evolutionary relationships among taxa representing the entire geographic range of the genus have not been determined. We used mitochondrial DNA sequence data to infer phylogenetic relationships among the three most broadly distributed members of the genus: C. brachyotis, C. horsfieldi, and C. sphinx, and to assess whether C. brachyotis represents a single widespread species, or a complex of distinct lineages. Results clearly indicate that C. brachyotis is a complex of lineages. C. sphinx and C. horsfieldi haplotypes formed monophyletic groups nested within the C. brachyotis species complex. We identified six divergent mitochondrial lineages that are currently referred to C. brachyotis. Lineages from India, Myanmar, Sulawesi, and the Philippines are geographically well-defined, while in Malaysia two lineages, designated Sunda and Forest, are broadly sympatric and may be ecologically distinct. Demographic analyses of the Sunda and Forest lineages suggest strikingly different population histories, including a recent and rapid range expansion in the Sunda lineage, possibly associated with changes in sea levels during the Pleistocene. The resolution of the taxonomic issues raised in this study awaits combined analysis of morphometric characters and molecular data. However, since both the Indian and Malaysian Forest C. brachyotis lineages are apparently ecologically restricted to increasingly fragmented forest habitat, we suggest that reevaluation of the conservation status of populations in these regions should be an immediate goal.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  16. Wise CA, Sullivan SG, Black ML, Erber WN, Bittles AH
    Am. J. Phys. Anthropol., 2005 Nov;128(3):670-7.
    PMID: 15864813
    Christmas Island is a remote Australian territory located close to the main Indonesian island of Java. Y-chromosome and mitochondrial DNA (mtDNA) markers were used to investigate the genetic structure of the population, which comprises communities of mixed ethnic origin. Analysis of 12 Y-chromosome biallelic polymorphisms revealed a high level of gene diversity and haplotype frequencies that were consistent with source populations in southern China and Southeast Asia. mtDNA hypervariable segment I (HVS-I) sequences displayed high levels of haplotype diversity and nucleotide diversity that were comparable to various Asian populations. Genetic distances revealed extremely low mtDNA differentiation among Christmas Islanders and Asian populations. This was supported by the relatively high proportion of sequence types shared among these populations. The most common mtDNA haplogroups were M* and B, followed by D and F, which are prevalent in East/Southeast Asia. Christmas Islanders of European descent were characterized by the Eurasian haplogroup R*, and a limited degree of admixture was observed. In general, analysis of the genetic data indicated population affinities to southern Chinese (in particular from the Yunnan Province) and Southeast Asia (Thailand, Malaysia, and Cambodia), which was consistent with historical records of settlement. The combined use of these different marker systems provides a useful and appropriate model for the study of contemporary populations derived from different ethnic origins.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  17. Chee SY
    Genet. Mol. Res., 2015;14(2):5677-84.
    PMID: 26125766 DOI: 10.4238/2015.May.25.20
    The mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene has been universally and successfully utilized as a barcoding gene, mainly because it can be amplified easily, applied across a wide range of taxa, and results can be obtained cheaply and quickly. However, in rare cases, the gene can fail to distinguish between species, particularly when exposed to highly sensitive methods of data analysis, such as the Bayesian method, or when taxa have undergone introgressive hybridization, over-splitting, or incomplete lineage sorting. Such cases require the use of alternative markers, and nuclear DNA markers are commonly used. In this study, a dendrogram produced by Bayesian analysis of an mtDNA COI dataset was compared with that of a nuclear DNA ATPS-α dataset, in order to evaluate the efficiency of COI in barcoding Malaysian nerites (Neritidae). In the COI dendrogram, most of the species were in individual clusters, except for two species: Nerita chamaeleon and N. histrio. These two species were placed in the same subcluster, whereas in the ATPS-α dendrogram they were in their own subclusters. Analysis of the ATPS-α gene also placed the two genera of nerites (Nerita and Neritina) in separate clusters, whereas COI gene analysis placed both genera in the same cluster. Therefore, in the case of the Neritidae, the ATPS-α gene is a better barcoding gene than the COI gene.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  18. Akib NA, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, et al.
    PLoS One, 2015;10(3):e0119749.
    PMID: 25786216 DOI: 10.1371/journal.pone.0119749
    Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  19. Schurr TG, Wallace DC
    Hum. Biol., 2002 Jun;74(3):431-52.
    PMID: 12180765
    In a previous study of Southeast Asian genetic variation, we characterized mitochondrial DNAs (mtDNAs) from six populations through high-resolution restriction fragment length polymorphism (RFLP) analysis. Our analysis revealed that these Southeast Asian populations were genetically similar to each other, suggesting they had a common origin. However, other patterns of population associations also emerged. Haplotypes from a major founding haplogroup in Papua New Guinea were present in Malaysia; the Vietnamese and Malaysian aborigines (Orang Asli) had high frequencies of haplogroup F, which was also seen in most other Southeast Asian populations; and haplogroup B, defined by the Region V 9-base-pair deletion, was present throughout the region. In addition, the Malaysian and Sabah (Borneo) aborigine populations exhibited a number of unique mtDNA clusters that were not observed in other populations. Unfortunately, it has been difficult to compare these patterns of genetic diversity with those shown in subsequent studies of mtDNA variation in Southeast Asian populations because the latter have typically sequenced the first hypervariable segment (HVS-I) of the control region (CR) sequencing rather than used RFLP haplotyping to characterize the mtDNAs present in them. For this reason, we sequenced the HVS-I of Southeast Asian mtDNAs that had previously been subjected to RFLP analysis, and compared the resulting data with published information from other Southeast Asian and Oceanic groups. Our findings reveal broad patterns of mtDNA haplogroup distribution in Southeast Asia that may reflect different population expansion events in this region over the past 50,000-5,000 years.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  20. Rosenblum LL, Supriatna J, Melnick DJ
    Am. J. Phys. Anthropol., 1997 Sep;104(1):35-45.
    PMID: 9331452
    Mitochondrial DNA variation was surveyed in nine populations of the pigtail macaque (Macaca nemestrina), covering all three recognized subspecies in Southeast Asia. To do this, a 2,300 base pair fragment spanning the mitochondrial NAD 3 and NAD 4 genes and flanking tRNA subunits leucine and glycine was targeted for amplification and digested with a battery of 16 restriction endonucleases. Out of a total of 107 individuals, 32 unique haplotypes could be distinguished. Parsimony and neighbor-joining analyses grouped the haplotypes into five strongly supported assemblages representing China/Thailand, Malaysia, Sumatra, Borneo, and Siberut. These results indicate that the mainland and island mtDNA haplotypes are strictly and uniquely limited to the geographic ranges of the recognized morphological subspecies. Cladistic and neighbor-joining analyses indicate that inferred phylogenies of mtDNA haplotypes are congruent with subspecies designations. Furthermore, in support of morphological studies, results indicate that the Mentawai macaque is most likely not a distinct species but a subspecies of M. nemestrina.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links