Displaying all 16 publications

Abstract:
Sort:
  1. Zahary MN, Kaur G, Hassan MR, Sidek AS, Singh H, Yeh LY, et al.
    Int J Colorectal Dis, 2014 Feb;29(2):261-2.
    PMID: 24072394 DOI: 10.1007/s00384-013-1770-1
    Matched MeSH terms: DNA Mismatch Repair/genetics*
  2. Juhari WKW, Ahmad Amin Noordin KB, Zakaria AD, Rahman WFWA, Mokhter WMMWM, Hassan MRA, et al.
    Genes (Basel), 2021 09 20;12(9).
    PMID: 34573430 DOI: 10.3390/genes12091448
    BACKGROUND: This study aimed to identify new genes associated with CRC in patients with normal mismatch repair (MMR) protein expression.

    METHOD: Whole-genome sequencing (WGS) was performed in seven early-age-onset Malay CRC patients. Potential germline genetic variants, including single-nucleotide variations and insertions and deletions (indels), were prioritized using functional and predictive algorithms.

    RESULTS: An average of 3.2 million single-nucleotide variations (SNVs) and over 800 indels were identified. Three potential candidate variants in three genes-IFNE, PTCH2 and SEMA3D-which were predicted to affect protein function, were identified in three Malay CRC patients. In addition, 19 candidate genes-ANKDD1B, CENPM, CLDN5, MAGEB16, MAP3K14, MOB3C, MS4A12, MUC19, OR2L8, OR51Q1, OR51AR1, PDE4DIP, PKD1L3, PRIM2, PRM3, SEC22B, TPTE, USP29 and ZNF117-harbouring nonsense variants were prioritised. These genes are suggested to play a role in cancer predisposition and to be associated with cancer risk. Pathway enrichment analysis indicated significant enrichment in the olfactory signalling pathway.

    CONCLUSION: This study provides a new spectrum of insights into the potential genes, variants and pathways associated with CRC in Malay patients.

    Matched MeSH terms: DNA Mismatch Repair/genetics*
  3. Cheah PL, Li J, Looi LM, Koh CC, Lau TP, Chang SW, et al.
    Malays J Pathol, 2019 Aug;41(2):91-100.
    PMID: 31427545
    Since 2014, the National Comprehensive Cancer Network (NCCN) has recommended that colorectal carcinoma (CRC) be universally tested for high microsatellite instability (MSI-H) which is present in 15% of such cancers. Fidelity of resultant microsatellites during DNA replication is contingent upon an intact mismatch repair (MMR) system and lack of fidelity can result in tumourigenesis. Prior to commencing routine screening for MSI-H, we assessed two commonly used methods, immunohistochemical (IHC) determination of loss of MMR gene products viz MLH1, MSH2, MSH6 and PMS2 against PCR amplification and subsequent fragment analysis of microsatellite markers, BAT25, BAT26, D2S123, D5S346 and D17S250 (Bethesda markers) in 73 unselected primary CRC. 15.1% (11/73) were categorized as MSI-H while deficient MMR (dMMR) was detected in 16.4% (12/73). Of the dMMR, 66.7% (8/12) were classified MSI-H, while 33.3% (4/12) were microsatellite stable/low microsatellite instability (MSS/MSI-L). Of the proficient MMR (pMMR), 95.1% (58/61) were MSS/MSI-L and 4.9% (3/61) were MSI-H. The κ value of 0.639 (standard error =0.125; p = 0.000) indicated substantial agreement between detection of loss of DNA mismatch repair using immunohistochemistry and the detection of downstream microsatellite instability using PCR. After consideration of advantages and shortcomings of both methods, it is our opinion that the choice of preferred technique for MSI analysis would depend on the type of laboratory carrying out the testing.
    Matched MeSH terms: DNA Mismatch Repair
  4. Wan Khairunnisa Wan Juhari, Khairul Bariah Ahmad Amin Noordin, Wan Faiziah Wan Abdul Rahman, Andee Dzulkarnaen Zakaria, Ahmad Shanwani Mohd Sidek, Muhammad Radzi Abu Hassan, et al.
    MyJurnal
    Background: Hereditary nonpolyposis colorectal cancer (HNPCC) also known as Lynch syndrome is commonly caused by genetic alterations in any of the four mismatch repair (MMR) genes; MLH1, MSH2, MSH6 and PMS2. This is the first study aimed to investigate genetic variants in Malay HNPCC families. Methods: Six Malay HNPCC families who fulfilled any of the Bethesda criteria were recruited into this study. A total of 3 ml of blood was withdrawn from each patient in the families. The samples were further analyzed using polymerase chain reaction and direct sequencing of the selected exons of MLH1 and MSH2 genes. Results: Two missense mutations and four single nucleotide polymorphisms (SNPs) were identified in six patients. These variants in the MLH1 and MSH2 genes were identified in four families who met the revised Bethesda guidelines. In two families, no mutation and polymorphism was identified in both the exon and intron of the respective genes. Of the mutations and polymorphisms identified, five have never been reported in Malay HNPCC families before. A missense mutation was detected in exon 5 of the MLH1 gene, c.394G>C (p.Asp132His) and four mutations and polymorphisms were detected in the MSH2 gene; heterozygous c.211+98T>C and c.211+9C>G and homozygous c.211+98T>C and c.211+9C>G, c.367-86A>C and c.382C>G. Conclusion: The results represented a new spectrum of mutations and polymorphisms in the Malay HNPCC families. However, a larger study involving additional families and analysis is required to determine the impact and nature of the identified mutations and polymorphisms.
    Matched MeSH terms: DNA Mismatch Repair
  5. Khosravi Y, Loke MF, Goh KL, Vadivelu J
    Front Microbiol, 2016;7:1462.
    PMID: 27695448
    Helicobacter pylori is the dominant species of the human gastric microbiota and is present in the stomach of more than half of the human population worldwide. Colonization by H. pylori causes persistent inflammatory response and H. pylori-induced gastritis is the strongest singular risk factor for the development of gastric adenocarcinoma. However, only a small proportion of infected individuals develop malignancy. Besides H. pylori, other microbial species have also been shown to be related to gastritis. We previously reported that interspecies microbial interaction between H. pylori and S. mitis resulted in alteration of their metabolite profiles. In this study, we followed up by analyzing the changing protein profiles of H. pylori and S. mitis by LC/Q-TOF mass spectrometry to understand the different response of the two bacterial species in a multi-species micro-environment. Differentially-expressed proteins in mono- and co-cultures could be mapped into 18 biological pathways. The number of proteins involve in RNA degradation, nucleotide excision repair, mismatch repair, and lipopolysaccharide (LPS) biosynthesis were increased in co-cultured H. pylori. On the other hand, fewer proteins involve in citrate cycle, glycolysis/ gluconeogenesis, aminoacyl-tRNA biosynthesis, translation, metabolism, and cell signaling were detected in co-cultured H. pylori. This is consistent with our previous observation that in the presence of S. mitis, H. pylori was transformed to coccoid. Interestingly, phosphoglycerate kinase (PGK), a major enzyme used in glycolysis, was found in abundance in co-cultured S. mitis and this may have enhanced the survival of S. mitis in the multi-species microenvironment. On the other hand, thioredoxin (TrxA) and other redox-regulating enzymes of H. pylori were less abundant in co-culture possibly suggesting reduced oxidative stress. Oxidative stress plays an important role in tissue damage and carcinogenesis. Using the in vitro co-culture model, this study emphasized the possibility that pathogen-microbiota interaction may have a protective effect against H. pylori-associated carcinogenesis.
    Matched MeSH terms: DNA Mismatch Repair
  6. Cheah PL, Li J, Looi LM, Teoh KH, Ong DB, Arends MJ
    PeerJ, 2018;6:e5530.
    PMID: 30221090 DOI: 10.7717/peerj.5530
    Background: Except for a few studies with contradictory observations, information is lacking on the possibility of association between DNA mismatch repair (MMR) status and the presence of cancer stem cells in colorectal carcinoma (CRC), two important aspects in colorectal carcinogenesis.

    Methods: Eighty (40 right-sided and 40 left-sided) formalin-fixed, paraffin-embedded primary CRC were immunohistochemically studied for CD133, a putative CRC stem cell marker, and MMR proteins MLH1, MSH2, MSH6 and PMS2. CD133 expression was semi-quantitated for proportion of tumor immunopositivity on a scale of 0-5 and staining intensity on a scale of 0-3 with a final score (units) being the product of proportion and intensity of tumor staining. The tumor was considered immunopositive only when the tumor demonstrated moderate to strong intensity of CD133 staining (a decision made after analysis of CD133 expression in normal colon). Deficient MMR (dMMR) was interpreted as unequivocal loss of tumor nuclear staining for any MMR protein despite immunoreactivity in the internal positive controls.

    Results: CD133 was expressed in 36 (90.0%) left-sided and 28 (70.0%) right-sided tumors (p  0.05).

    Conclusion: Proficient MMR correlated with high levels of CD133-marked putative cancer stem cells in both right- and left-sided tumors, whereas significantly lower levels of CD133-marked putative cancer stem cells were associated with deficient MMR status in colorectal carcinomas found on the right.

    Matched MeSH terms: DNA Mismatch Repair
  7. Tam SM, Samipak S, Britt A, Chetelat RT
    Genetica, 2009 Dec;137(3):341-54.
    PMID: 19690966 DOI: 10.1007/s10709-009-9398-3
    DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
    Matched MeSH terms: DNA Mismatch Repair/genetics*
  8. Tan LP, Ng BK, Balraj P, Lim PK, Peh SC
    Pathology, 2007 Apr;39(2):228-34.
    PMID: 17454753
    BACKGROUND AND AIMS: Colorectal cancers of different subtypes involve different pathogenic pathways like the Wnt and the mutator pathways. In this study, we screened 73 colorectal cancer cases from a multi-racial group for genetic and expression profile defects with the aim of correlating these with patients' clinicopathological characteristics.
    METHODS: Mutation screening of the entire coding region of APC and exon 3 of CTNNB1, loss of heterozygosity (LOH) of APC, and microsatellite instability (MSI) status were assessed for 44 patients with available paired frozen normal and tumour tissues. In addition, 29 cases with available paraffin embedded tumour blocks were screened for mutation in exon 3 of CTNNB1, the APC mutation cluster region (codon 1286-1513), and hMLH1, hMSH2, hMSH6 protein expressions by immunohistochemistry method.
    RESULTS: In our study, 15/73 cases showed APC mutations (20.5%), 1/73 cases had CTNNB1 mutation (1.4%), 5/32 cases had APC LOH (15.6%), and 16/70 (22.9%) cases revealed at least some form of mismatch repair (MMR) defect. Tumour grade (poor differentiation) was found to correlate significantly with right-sided tumour and mucinous histology (p = 0.01879 and 0.00320, respectively). Patients of younger age (below 45 years) more often had tumours of mucinous histology (p = 0.00014), while patients of older age (above 75 years) more often had tumours on the right side of the colon (p = 0.02448). Tumours of the mucinous histology subtype often had MMR defects (p = 0.02686). There was no difference in the occurrence of APC and CTNNB1 mutations and MMR defects found within our multi-racial colorectal cancer patient cohort.
    CONCLUSION: Our findings support the notion that racial factor may not be related to the occurrence of MMR defects and APC and CTNNB1 mutations in our multi-racial patient cohort.
    Matched MeSH terms: DNA Mismatch Repair*
  9. Woo YL, Cheah PL, Shahruddin SI, Omar SZ, Arends M
    Int J Gynecol Pathol, 2014 Nov;33(6):554-9.
    PMID: 25272293 DOI: 10.1097/PGP.0000000000000099
    Endometrial cancer is the most common gynecologic cancer in developed countries and is rising in incidence globally. Although the 5-year survival rates are >80%, factors beyond conventional pathologic features that predict clinical outcomes are still being elucidated. The aims of this study were to define the prevalence and associations of deficient mismatch repair (dMMR) protein expression (MLH1, MSH2, MSH6, PMS2) by immunohistochemistry in a multiethnic Southeast Asian cohort with endometrioid endometrial cancer. A total of 77 patients with adequate formalin-fixed paraffin-embedded specimens were identified. The sections were stained in 2 centers for 4 MMR proteins and examined by 2 independent specialist histopathologists. The mean age for the cohort was 58.6 yr, with 19.4% (15/77) of patients' cancers showing loss of 2 MMR proteins. All 13 cancers with absent MLH1 showed PMS2 loss (13/15), whereas absent MSH2 correlated with MHS6 loss (2/15). There were no significant differences for dMMR cases in age, body mass index, histopathologic characteristics, and clinical outcomes. In dMMR cases, an overrepresentation of patients of Indian ethnic origin was observed compared with Chinese and Malays. These findings suggest that dMMR protein expression in a Southeast Asian endometrial cancer cohort does not correlate with disease outcomes.
    Matched MeSH terms: DNA Mismatch Repair*
  10. Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY
    BMC Genomics, 2020 Apr 23;21(1):319.
    PMID: 32326906 DOI: 10.1186/s12864-020-6709-7
    BACKGROUND: Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out.

    RESULTS: In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process.

    CONCLUSION: This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.

    Matched MeSH terms: DNA Mismatch Repair/genetics
  11. Ho KL, Chong PP, Yazan LS, Ismail M
    J Med Food, 2012 Dec;15(12):1096-102.
    PMID: 23216109 DOI: 10.1089/jmf.2012.2245
    Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rats were treated with vanillin orally and intraperitoneally at low and high concentrations and ACF density, multiplicity, and distribution were observed. The gene expression of 14 colorectal cancer-related genes was also studied. Results showed that vanillin consumed orally had no effect on ACF. However, high concentrations (300 mg/kg body weight) of vanillin administered through intraperitoneal injection could increase ACF density and ACF multiplicity. ACF were mainly found in the distal colon rather than in the mid-section and proximal colon. The expression of colorectal cancer biomarkers, protooncogenes, recombinational repair, mismatch repair, and cell cycle arrest, and tumor suppressor gene expression were also affected by vanillin. Vanillin was not cocarcinogenic when consumed orally. However, it was cocarcinogenic when being administered intraperitoneally at high concentration. Hence, the use of vanillin in food should be safe but might have cocarcinogenic potential when it is used in high concentration for therapeutic purposes.
    Matched MeSH terms: DNA Mismatch Repair/drug effects
  12. Song DSS, Leong SW, Ng KW, Abas F, Shaari K, Leong CO, et al.
    SLAS Discov, 2019 06;24(5):548-562.
    PMID: 30897027 DOI: 10.1177/2472555219831405
    DNA mismatch repair (MMR) deficiency has been associated with a higher risk of developing colorectal, endometrial, and ovarian cancer, and confers resistance in conventional chemotherapy. In addition to the lack of treatment options that work efficaciously on these MMR-deficient cancer patients, there is a great need to discover new drug leads for this purpose. In this study, we screened through a library of commercial and semisynthetic natural compounds to identify potential synthetic lethal drugs that may selectively target MLH1 mutants using MLH1 isogenic colorectal cancer cell lines and various cancer cell lines with known MLH1 status. We identified a novel diarylpentanoid analogue, 2-benzoyl-6-(2,3-dimethoxybenzylidene)-cyclohexenol, coded as AS13, that demonstrated selective toxicity toward MLH1-deficient cancer cells. Subsequent analysis suggested AS13 induced elevated levels of oxidative stress, resulting in DNA damage where only the proficient MLH1 cells were able to be repaired and hence escaping cellular death. While AS13 is modest in potency and selectivity, this discovery has the potential to lead to further drug development that may offer better treatment options for cancer patients with MLH1 deficiency.
    Matched MeSH terms: DNA Mismatch Repair/drug effects
  13. Zahary MN, Ahmad Aizat AA, Kaur G, Yeong Yeh L, Mazuwin M, Ankathil R
    Oncol Lett, 2015 Nov;10(5):3216-3222.
    PMID: 26722315
    Colorectal cancer (CRC) occurs as a more common sporadic form and a less common familial form. Our earlier analysis of germline mutations of mismatch repair genes confirmed only 32% of familial CRC cases as Lynch syndrome cases. It was hypothesized that the remaining familial aggregation may be 'polygenic' due to single nucleotide polymorphisms (SNPs) of low penetrance genes involved in cancer predisposition pathways, such as cell cycle regulation and apoptosis pathways. The current case-control study involving 104 CRC patients (52 sporadic and 52 familial) and 104 normal healthy controls investigated the contribution of the SNPs cyclin D1 (CCND1) G870A and tumor protein p53 (TP53) C215G in modulating familial and sporadic CRC susceptibility risk. DNA was extracted from peripheral blood and the polymorphisms were genotyped by employing a polymerase chain reaction-restriction fragment length polymorphism method. The association between these polymorphisms and CRC susceptibility risk was calculated using a binary logistic regression analysis and deriving odds ratios (ORs). The A/A variant genotype of CCND1 and G/G variant genotype of TP53 exhibited a significantly greater association with the risk of sporadic CRC [CCND1: OR, 3.471; 95% confidence interval (CI), 1.443-8.350; P=0.005. TP53: OR, 2.829; CI, 1.119-7.152; P=0.026] as well as familial CRC susceptibility (CCND1: OR, 3.086; CI, 1.270-7.497; P=0.019. TP53: OR, 3.048; CI, 1.147-8.097; P=0.030). The results suggest a potential role of the SNPs CCND1 G870A and TP53 C215G in the modulation of sporadic and familial CRC susceptibility risk.
    Matched MeSH terms: DNA Mismatch Repair
  14. Cheah PL, Looi LM, Teoh KH, Rahman NA, Wong LX, Tan SY
    Asian Pac J Cancer Prev, 2014;15(7):3287-91.
    PMID: 24815484
    BACKGROUND: The interesting preponderance of Chinese with colorectal carcinoma (CRC) amongst the three major ethnic groups in Malaysia prompted a study to determine DNA mismatch repair (MMR) status in our CRC and attempt correlation with patient age, gender and ethnicity as well as location, grade, histological type and stage of tumour. Histologically re-confirmed CRC, diagnosed between 1st January 2005 and 31st December 2007 at the Department of Pathology, University of Malaya Medical Centre, were immunohistochemically stained with monoclonal antibodies to MMR proteins, MLH1, MSH2, MSH6 and PMS2 on the Ventana Benchmark XT autostainer. Of the 142 CRC cases entered into the study, there were 82 males and 60 females (M:F=1.4:1). Ethnically, 81 (57.0%) were Chinese, 32 (22.5%) Malays and 29 (20.4%) Indians. The patient ages ranged between 15-87 years (mean=62.4 years) with 21 cases <50-years and 121 ≥50-years of age. 14 (9.9%) CRC showed deficient MMR (dMMR). Concurrent loss of MLH1 and PMS2 occurred in 10, MSH2 and MSH6 in 2 with isolated loss of MSH6 in 1 and PMS2 in 1. dMMR was noted less frequently amongst the Chinese (6.2%) in comparison with their combined Malay and Indian counterparts (14.8%), and was associated with right sided and poorly differentiated tumours (p<0.05). 3 of the 5 (60.0%) dMMR CRC cases amongst the Chinese and 1 of 9 cases (11.1%) amongst the combined Malay and Indian group were <50-years of age. No significant association of dMMR was noted with patient age and gender, tumour stage or mucinous type.
    Matched MeSH terms: DNA Mismatch Repair/genetics*
  15. Kaur G, Masoud A, Raihan N, Radzi M, Khamizar W, Kam LS
    Indian J Med Res, 2011 Aug;134:186-92.
    PMID: 21911971
    DNA mismatch repair gene (MMR) abnormalities are seen in 95 per cent of hereditary nonpolyposis colorectal cancer (HNPCC) and 10-15 per cent of sporadic colorectal cancers. There are no data on MMR abnormalities in Malaysian colorectal cancer patients. This study was aimed to determine the frequency of abnormal MMR gene protein expression in colorectal carcinoma in Northern Peninsular Malaysia using immunohistochemistry.
    Matched MeSH terms: DNA Mismatch Repair/genetics*
  16. Zahary MN, Kaur G, Abu Hassan MR, Singh H, Naik VR, Ankathil R
    World J Gastroenterol, 2012 Feb 28;18(8):814-20.
    PMID: 22371642 DOI: 10.3748/wjg.v18.i8.814
    To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations.
    Matched MeSH terms: DNA Mismatch Repair
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links