Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. Thent ZC, Das S, Henry LJ
    PLoS One, 2013;8(11):e80436.
    PMID: 24236181 DOI: 10.1371/journal.pone.0080436
    Background: Exercise training programs have emerged as a useful therapeutic regimen for the management of type 2 diabetes mellitus (T2DM). Majority of the Western studies highlighted the effective role of exercise in T2DM. Therefore, the main aim was to focus on the extent, type of exercise and its clinical significance in T2DM in order to educate the clinicians from developing countries, especially in Asians.

    Methods: Pubmed, Science Direct, Scopus, ISI Web of Knowledge and Google scholar were searched using the terms "type 2 diabetes mellitus," "type 2 DM," "exercise," and/or "physical activity," and "type 2 diabetes mellitus with exercise." Only clinical or human studies published in English language between 2000 and 2012 were included. Certain criteria were assigned to achieve appropriate results.

    Results: Twenty five studies met the selected criteria. The majority of the studies were randomized controlled trial study design (65%). Most of the aerobic exercise based studies showed a beneficial effect in T2DM. Resistance exercise also proved to have positive effect on T2DM patients. Minimal studies related to other types of exercises such as yoga classes, joba riding and endurance-type exercise were found. On the other hand, United States of America (USA) showed strong interest of exercise management towards T2DM.

    Conclusion: Aerobic exercise is more common in clinical practice compared to resistance exercise in managing T2DM. Treatment of T2DM with exercise training showed promising role in USA. A large number of researches are mandatory in the developing countries for incorporating exercise in the effective management of T2DM.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  2. Dean SJ, Rhodes A
    Malays J Pathol, 2014 Dec;36(3):155-62.
    PMID: 25500513 MyJurnal
    The incidence of breast cancer in Malaysia and other Asian countries is on the increase, reflecting lifestyle changes some of which are known risk factors for the development of breast cancer. Most breast cancers are amenable to adjuvant therapies that target hormone receptors or HER2 receptors on the surface of the cancer cells and bring about significant improvement in survival. However, approximately 17% of Malaysian women with breast cancer, present with tumours that are devoid of these receptors and are consequently termed 'triple negative' breast cancers. These triple negative breast cancers typically occur in women of a younger age than receptor positive cancers, are predominantly of high grade tumours and the prognosis is usually poor. There is therefore a pressing need to understand the biological pathways that drive these tumours, in order that effective strategies are developed to treat these aggressive tumours. With the increasing affluence of developing countries, obesity and Type II Diabetes are also on the rise. These diseases are associated with an increased risk of developing a range of cancers including those of the breast. In particular, the metabolic syndrome has been shown to be associated with triple negative breast cancer. This article reviews some of the metabolic pathways and biomarkers which have been shown to be aberrantly expressed in triple negative breast cancer and highlights some of the ongoing work in this area.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  3. Lee SWH, Ng KY, Chin WK
    Sleep Med Rev, 2017 02;31:91-101.
    PMID: 26944909 DOI: 10.1016/j.smrv.2016.02.001
    Recent epidemiological studies have suggested that there is an association between glycemic control and sleep disturbances in patients with type 2 diabetes, but the extent is unclear. A systematic literature search was performed in nine electronic databases from inception until August 2015 without any language restriction. The search identified 20 studies (eight studies reporting duration of sleep and 15 studies evaluating sleep quality), and 15 were included in the meta-analysis. Short and long sleep durations were associated with an increased hemoglobin A1c (HbA1c) (weighted mean difference (WMD): 0.23% [0.10-0.36], short sleep; WMD: 0.13% [0.02-0.25], long sleep) compared to normal sleep, suggesting a U-shaped dose-response relationship. Similarly, poor sleep quality was associated with an increased HbA1c (WMD: 0.35% [0.12-0.58]). Results of this study suggest that amount of sleep as well as quality of sleep is important in the metabolic function of type 2 diabetes patients. Further studies are needed to identify for the potential causal role between sleep and altered glucose metabolism.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  4. Mokhtar SS, Vanhoutte PM, Leung SW, Yusof MI, Wan Sulaiman WA, Mat Saad AZ, et al.
    Nitric Oxide, 2016 Feb 29;53:35-44.
    PMID: 26768833 DOI: 10.1016/j.niox.2015.12.007
    Diabetes impairs endothelium-dependent relaxations. The present study evaluated the contribution of different endothelium-dependent relaxing mechanisms to the regulation of vascular tone in subcutaneous blood vessels of humans with Type 2 diabetes mellitus. Subcutaneous arteries were isolated from tissues of healthy controls and diabetics. Vascular function was determined using wire myography. Expressions of proteins were measured by Western blotting and immunostaining. Endothelium-dependent relaxations to acetylcholine were impaired in arteries from diabetics compared to controls (P = 0.009). Acetylcholine-induced nitric oxide (NO)-mediated relaxations [in the presence of an inhibitor of cyclooxygenases (COX; indomethacin) and small and intermediate conductance calcium-activated potassium channel blockers (UCL1684 and TRAM 34, respectively)] were attenuated in arteries from diabetics compared to controls (P type relaxations [in the presence of indomethacin and the NO synthase blocker, l-NAME] were augmented in arteries from diabetics compared to controls (P = 0.003). Endothelium-independent relaxations to sodium nitroprusside (NO donor) and salbutamol (β-adrenoceptor agonist) were preserved, but those to prostacyclin were attenuated in diabetics compared to controls (P = 0.017). In arteries of diabetics, protein expressions of endothelial NO synthase, prostacyclin synthase and prostacyclin receptors were decreased, but those of COX-2 were increased. These findings suggest that in human diabetes, the impairment of endothelium-dependent relaxations is caused by a diminished NO bioavailability; however, EDH appears to compensate, at least in part, for this dysfunction.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  5. Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, et al.
    Mol Biosyst, 2015 Jul;11(7):1742-74.
    PMID: 25919044 DOI: 10.1039/c5mb00158g
    Metabolomic studies on obesity and type 2 diabetes mellitus have led to a number of mechanistic insights into biomarker discovery and comprehension of disease progression at metabolic levels. This article reviews a series of metabolomic studies carried out in previous and recent years on obesity and type 2 diabetes, which have shown potential metabolic biomarkers for further evaluation of the diseases. Literature including journals and books from Web of Science, Pubmed and related databases reporting on the metabolomics in these particular disorders are reviewed. We herein discuss the potential of reported metabolic biomarkers for a novel understanding of disease processes. These biomarkers include fatty acids, TCA cycle intermediates, carbohydrates, amino acids, choline and bile acids. The biological activities and aetiological pathways of metabolites of interest in driving these intricate processes are explained. The data from various publications supported metabolomics as an effective strategy in the identification of novel biomarkers for obesity and type 2 diabetes. Accelerating interest in the perspective of metabolomics to complement other fields in systems biology towards the in-depth understanding of the molecular mechanisms underlying the diseases is also well appreciated. In conclusion, metabolomics can be used as one of the alternative approaches in biomarker discovery and the novel understanding of pathophysiological mechanisms in obesity and type 2 diabetes. It can be foreseen that there will be an increasing research interest to combine metabolomics with other omics platforms towards the establishment of detailed mechanistic evidence associated with the disease processes.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  6. Hafizi Abu Bakar M, Kian Kai C, Wan Hassan WN, Sarmidi MR, Yaakob H, Zaman Huri H
    Diabetes Metab Res Rev, 2015 Jul;31(5):453-75.
    PMID: 25139820 DOI: 10.1002/dmrr.2601
    Insulin resistance is characterized by hyperglycaemia, dyslipidaemia and oxidative stress prior to the development of type 2 diabetes mellitus. To date, a number of mechanisms have been proposed to link these syndromes together, but it remains unclear what the unifying condition that triggered these events in the progression of this metabolic disease. There have been a steady accumulation of data in numerous experimental studies showing the strong correlations between mitochondrial dysfunction, oxidative stress and insulin resistance. In addition, a growing number of studies suggest that the raised plasma free fatty acid level induced insulin resistance with the significant alteration of oxidative metabolism in various target tissues such as skeletal muscle, liver and adipose tissue. In this review, we herein propose the idea of long chain fatty acid-induced mitochondrial dysfunctions as one of the key events in the pathophysiological development of insulin resistance and type 2 diabetes. The accumulation of reactive oxygen species, lipotoxicity, inflammation-induced endoplasmic reticulum stress and alterations of mitochondrial gene subset expressions are the most detrimental that lead to the developments of aberrant intracellular insulin signalling activity in a number of peripheral tissues, thereby leading to insulin resistance and type 2 diabetes.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  7. Ahmad B, Vohra MS, Saleemi MA, Serpell CJ, Fong IL, Wong EH
    Biochimie, 2021 May;184:26-39.
    PMID: 33548390 DOI: 10.1016/j.biochi.2021.01.015
    Brown and beige adipose tissues are the primary sites for adaptive non-shivering thermogenesis. Although they have been known principally for their thermogenic effects, in recent years, it has emerged that, just like white adipose tissue (WAT), brown and beige adipose tissues also play an important role in the regulation of metabolic health through secretion of various brown adipokines (batokines) in response to various physiological cues. These secreted batokines target distant organs and tissues such as the liver, heart, skeletal muscles, brain, WAT, and perform various local and systemic functions in an autocrine, paracrine, or endocrine manner. Brown and beige adipose tissues are therefore now receiving increasing levels of attention with respect to their effects on various other organs and tissues. Identification of novel secreted factors by these tissues may help in the discovery of drug candidates for the treatment of various metabolic disorders such as obesity, type-2 diabetes, skeletal deformities, cardiovascular diseases, dyslipidemia. In this review, we comprehensively describe the emerging secretory role of brown/beige adipose tissues and the metabolic effects of various brown/beige adipose tissues secreted factors on other organs and tissues in endocrine/paracrine manners, and as well as on brown/beige adipose tissue itself in an autocrine manner. This will provide insights into understanding the potential secretory role of brown/beige adipose tissues in improving metabolic health.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  8. Leh HE, Mohd Sopian M, Abu Bakar MH, Lee LK
    Ann Med, 2021 12;53(1):1059-1065.
    PMID: 34180336 DOI: 10.1080/07853890.2021.1943515
    BACKGROUND: The use of lycopene as a complementary medicine for Type II diabetes mellitus (T2DM) is limited and controversial. This study evaluated the effect of lycopene intake on the changes of glycaemic status and antioxidant capacity among the T2DM patients.

    PATIENTS AND METHODS: This case-control study involved the participation of 87 patients and 122 healthy individuals. Lycopene intake was assessed by using a food frequency questionnaire. The peripheral antioxidant capacity among the T2DM patients was evaluated. Glycated haemoglobin (HbA1c) and fasting plasma glucose (FPG) were measured as indications of glycaemic status.

    RESULTS: Peripheral antioxidant capacity was significantly lower in the T2DM group. Direct positive correlations were found between the lycopene intake and peripheral antioxidant level among the T2DM patients. Contrarily, HbA1c and FPG levels decreased significantly with the higher lycopene intake.

    CONCLUSIONS: T2DM patients with a higher lycopene intake showed a greater peripheral antioxidant capacity and better glycaemic control. Lycopene may act to ameliorate oxidative stress and improve the pathophysiology of T2DM.

    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  9. Shahar MA, Omar AM, Loh HH
    Can J Diabetes, 2019 Mar;43(2):98-104.e7.
    PMID: 30145243 DOI: 10.1016/j.jcjd.2018.06.003
    OBJECTIVES: As is true for other chronic illnesses, perception of disease control is pivotal to patient empowerment in diabetes care. This study aimed to describe the perception of diabetes control by patients with poor glycated hemoglobin (A1C) levels so as to explore the relationship between perception and various sociodemographic and disease characteristics and to measure the patients' knowledge, attitudes and practices in diabetes care.
    METHODS: A cross-sectional study was made involving 276 patients with type 2 diabetes mellitus. After obtaining informed consent, their sociodemographics, medical histories and most recent available blood investigations were documented. Patients were asked about their perceptions of diabetes control-whether it was excellent, moderate or poor. A Malay-language knowledge, attitudes and practice questionnaire was administered to respondents. Analyses were descriptive and exploratory.
    RESULTS: The median age of the subjects and the durations of diabetes were 56 (interquartile range, 48-62) years and 8 (interquartile range, 4-13) years, respectively. The median A1C level was 9.5% (interquartile range, 8.3%-11.4%). Despite having poor A1C levels, 28.4% of patients perceived that their diabetes control was excellent; 58.9% perceived it as moderate, and only 12.7% accurately perceived it as poor. A significant number of those with higher education had wrong perceptions, indicating that other factors, such as effective communication, need to be considered. The absence of an association between perception and duration of diabetes suggests that information given over the years did not contribute to patients' understanding of disease control. Younger patients had better knowledge scores. Those with higher education levels had higher quartiles of knowledge and attitude but not practice scores.
    CONCLUSIONS: This study demonstrated discordance between perceived diabetes control and actual A1C levels, which may hinder effective diabetes care.
    Study site: a tertiary referral center and a primary care centre in Kuantan, Pahang, Malaysia
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  10. Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, et al.
    Drug Des Devel Ther, 2018;12:3999-4021.
    PMID: 30538427 DOI: 10.2147/DDDT.S173970
    The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  11. Ng ZX, Kuppusamy UR, Poh R, Tajunisah I, Koay AC, Fong KC, et al.
    Genet. Mol. Res., 2012 Mar 01;11(1):455-61.
    PMID: 22427038 DOI: 10.4238/2012.March.1.2
    Diabetic retinopathy is the most common diabetic eye disease, occurring in about 60% of type 2 diabetic patients. Other than known clinical risk factors, the influence of genes has been suggested as part of the development of diabetic retinopathy. We investigated the association of Gly82Ser, 1704G/T and 2184A/G polymorphisms in the RAGE gene with retinopathy in type 2 diabetic patients in Malaysia. Ninety-eight unrelated retinopathy patients and 185 unrelated healthy controls from all over Malaysia were recruited in this study. The allele and genotype frequencies of the three gene polymorphisms were investigated using PCR-RFLP. The allele frequency of the three polymorphisms did not differ significantly between the control and the retinopathy group (P > 0.05). Analysis of the frequency of GA+AA, GT+TT and AG+GG in the retinopathy group did not reveal significant differences (P > 0.05) compared to the control group. We conclude that RAGE gene Gly82Ser, 1704G/T and 2184A/G polymorphisms are not associated with retinopathy development in the Malaysian population.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  12. Chan SP, Ji LN, Nitiyanant W, Baik SH, Sheu WH
    Diabetes Res Clin Pract, 2010 Aug;89(2):e30-2.
    PMID: 20541826 DOI: 10.1016/j.diabres.2010.05.008
    Symptoms of hypoglycemia were reported by 35.8% of patients with type 2 diabetes treated with oral antihyperglycemic agents in the Asia-Pacific region. Symptoms were severe in 11.6% and very severe in 8.2% of patients experiencing hypoglycemia.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  13. Cheng SH, Ismail A, Anthony J, Ng OC, Hamid AA, Yusof BN
    BMC Complement Altern Med, 2016 Feb 27;16:84.
    PMID: 26920910 DOI: 10.1186/s12906-016-1047-7
    BACKGROUND: Type 2 diabetes mellitus is a major health threat worldwide. Cosmos caudatus is one of the medicinal plants used to treat type 2 diabetes. Therefore, this study aims to determine the effectiveness and safety of C. caudatus in patients with type 2 diabetes. Metabolomic approach will be carried out to compare the metabolite profiles between C. Caudatus treated diabetic patients and diabetic controls.

    METHODS AND DESIGN: This is a single-center, randomized, controlled, two-arm parallel design clinical trial that will be carried out in a tertiary hospital in Malaysia. In this study, 100 patients diagnosed with type 2 diabetes will be enrolled. Diabetic patients who meet the eligibility criteria will be randomly allocated to two groups, which are diabetic C. caudatus treated(U) group and diabetic control (C) group. Primary and secondary outcomes will be measured at baseline, 4, 8, and 12 weeks. The serum and urine metabolome of both groups will be examined using proton NMR spectroscopy.

    DISCUSSION: The study will be the first randomized controlled trial to assess whether C. caudatus can confer beneficial effect in patients with type 2 diabetes. The results of this trial will provide clinical evidence on the effectiveness and safety of C. caudatus in patients with type 2 diabetes.

    TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02322268.

    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  14. Rahim MA, Rahim ZH, Ahmad WA, Hashim OH
    Int J Med Sci, 2015;12(4):329-35.
    PMID: 25897294 DOI: 10.7150/ijms.11280
    Human saliva plays a pivotal role in digesting food and maintaining oral hygiene. The presence of electrolytes, mucus, glycoproteins, enzymes, antibacterial compounds, and gingival crevicular fluid in saliva ensures the optimum condition of oral cavity and general health condition. Saliva collection has been proven non-invasive, convenient, and inexpensive compared to conventional venipuncture procedure. These distinctive advantages provide a promising potential of saliva as a diagnostic fluid. Through comprehensive analysis, an array of salivary proteins and peptides may be beneficial as biomarkers in oral and systemic diseases. In this review, we discuss the utility of human salivary proteomes and tabulate the recent salivary biomarkers found in subjects with acute myocardial infarction as well as respective methods employed. In a clinical setting, since acute myocardial infarction contributes to large cases of mortality worldwide, an early intervention using these biomarkers will provide an effective solution to reduce global heart attack incidence particularly among its high-risk group of type-2 diabetes mellitus patients. The utility of salivary biomarkers will make the prediction of this cardiac event possible due to its reliability hence improve the quality of life of the patients. Current challenges in saliva collection are also addressed to improve the quality of saliva samples and produce robust biomarkers for future use in clinical applications.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  15. Hammad MA, Abdo MS, Mashaly AM, Syed Sulaiman SA, Alghamdi S, Mangi AA, et al.
    Diabetes Metab Syndr, 2019 07 08;13(4):2557-2564.
    PMID: 31405676 DOI: 10.1016/j.dsx.2019.07.005
    Statins have impacts on the metabolism of glucose that might influence the progress of diabetes in non-diabetics or affect glycemic control in patients with existing diabetes. Experimental proof has been contradictory about whether some statins display beneficial properties while others indicate harmful impressions. Some systematic reviews of statins had stated conflicting findings on the concern of glucose metabolism. The current study investigates the published systematic reviews and meta-analyses to combine their results and give a clear situation regarding the influence of statins therapy on glycated hemoglobin (HbA1c). This study has valuable strength points; long follow-up period and big sample size.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  16. Taha H, Arya A, Paydar M, Looi CY, Wong WF, Vasudeva Murthy CR, et al.
    Food Chem Toxicol, 2014 Apr;66:295-306.
    PMID: 24518542 DOI: 10.1016/j.fct.2014.01.054
    The current study aimed to ascertain the antidiabetic potential of Pseuduvaria monticola bark methanolic extract (PMm) using in vitro mechanistic study models. In particular, the study determined the effect of PMm on cellular viability, 2-NBDG glucose uptake, insulin secretion, and NF-κB translocation in mouse pancreatic insulinoma cells (NIT-1). Furthermore, in vivo acute toxicity and antidiabetic studies were performed using streptozotocin (STZ)-induced type 1 and STZ-nicotinamide-induced type 2 diabetic rat models to evaluate various biochemical parameters and markers of oxidative stress and pro-inflammatory cytokines. Five isoquinoline alkaloids and three phenolic compounds were tentatively identified in the PMm by LC/MS Triple TOF. The study results showed that PMm is non-toxic to NIT-1 cells and significantly increased the glucose uptake and insulin secretion without affecting the translocation of NF-κB. Moreover, the non-toxic effects of PMm were confirmed through an in vivo acute toxicity study, which revealed that the serum insulin and C-peptide levels were significantly upregulated in type 2 diabetic rats and that no significant changes were observed in type 1 diabetic rats. Similarly, PMm was found to downregulate the levels of oxidative stress and pro-inflammatory cytokines in type 2 diabetic rats by alleviating hyperglycemia. Therefore, we conclude that PMm may be developed as an antidiabetic agent for the treatment of type 2 diabetes-associated conditions.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  17. Law GR, Gilthorpe MS, Secher AL, Temple R, Bilous R, Mathiesen ER, et al.
    Diabetologia, 2017 04;60(4):618-624.
    PMID: 28105519 DOI: 10.1007/s00125-017-4205-7
    AIMS/HYPOTHESIS: This study aimed to examine the relationship between average glucose levels, assessed by continuous glucose monitoring (CGM), and HbA1clevels in pregnant women with diabetes to determine whether calculations of standard estimated average glucose (eAG) levels from HbA1c measurements are applicable to pregnant women with diabetes.
    METHODS: CGM data from 117 pregnant women (89 women with type 1 diabetes; 28 women with type 2 diabetes) were analysed. Average glucose levels were calculated from 5-7 day CGM profiles (mean 1275 glucose values per profile) and paired with a corresponding (±1 week) HbA1c measure. In total, 688 average glucose-HbA1c pairs were obtained across pregnancy (mean six pairs per participant). Average glucose level was used as the dependent variable in a regression model. Covariates were gestational week, study centre and HbA1c.
    RESULTS: There was a strong association between HbA1c and average glucose values in pregnancy (coefficient 0.67 [95% CI 0.57, 0.78]), i.e. a 1% (11 mmol/mol) difference in HbA1c corresponded to a 0.67 mmol/l difference in average glucose. The random effects model that included gestational week as a curvilinear (quadratic) covariate fitted best, allowing calculation of a pregnancy-specific eAG (PeAG). This showed that an HbA1c of 8.0% (64 mmol/mol) gave a PeAG of 7.4-7.7 mmol/l (depending on gestational week), compared with a standard eAG of 10.2 mmol/l. The PeAG associated with maintaining an HbA1c level of 6.0% (42 mmol/mol) during pregnancy was between 6.4 and 6.7 mmol/l, depending on gestational week.
    CONCLUSIONS/INTERPRETATION: The HbA1c-average glucose relationship is altered by pregnancy. Routinely generated standard eAG values do not account for this difference between pregnant and non-pregnant individuals and, thus, should not be used during pregnancy. Instead, the PeAG values deduced in the current study are recommended for antenatal clinical care.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  18. Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, et al.
    CNS Neurol Disord Drug Targets, 2020;19(3):174-183.
    PMID: 32418534 DOI: 10.2174/1871527319666200518102130
    The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism
  19. Osland E, Yunus RM, Khan S, Memon B, Memon MA
    Surg Endosc, 2017 04;31(4):1952-1963.
    PMID: 27623997 DOI: 10.1007/s00464-016-5202-5
    BACKGROUND: The prevalence of type 2 diabetes is growing in both developed and developing countries and is strongly linked with the prevalence of obesity. Bariatric surgical procedures such as laparoscopic vertical sleeve gastrectomy (LVSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB) are increasingly being utilized to manage related comorbid chronic conditions, including type 2 diabetes.

    METHODS: A systematic review of randomized controlled trials (RCTs) was undertaken using the PRISMA guidelines to investigate the postoperative impact on diabetes resolution following LVSG versus LRYGB.

    RESULTS: Seven RCTs involving a total of 732 patients (LVSG n = 365, LRYGB n = 367) met inclusion criteria. Significant diabetes resolution or improvement was reported with both procedures across all time points. Similarly, measures of glycemic control (HbA1C and fasting blood glucose levels) improved with both procedures, with earlier improvements noted in LRYGB that stabilized and did not differ from LVSG at 12 months postoperatively. Early improvements in measures of insulin resistance in both procedures were also noted in the studies that investigated this.

    CONCLUSIONS: This systematic review of RCTs suggests that both LVSG and LRYGB are effective in resolving or improving preoperative type 2 diabetes in obese patients during the reported 3- to 5-year follow-up periods. However, further studies are required before longer-term outcomes can be elucidated. Areas identified that need to be addressed for future studies on this topic include longer follow-up periods, standardized definitions and time point for reporting, and financial analysis of outcomes obtained between surgical procedures to better inform procedure selection.

    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
  20. Moradipoor S, Ismail P, Etemad A, Wan Sulaiman WA, Ahmadloo S
    Biomed Res Int, 2016;2016:1845638.
    PMID: 27781209 DOI: 10.1155/2016/1845638
    Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT(2) Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.
    Matched MeSH terms: Diabetes Mellitus, Type 2/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links