Displaying all 5 publications

Abstract:
Sort:
  1. Ho, L.H., Zainal Abidin, N.F.S., Tan, T.C., Noroul Asyikeen, Z.
    MyJurnal
    The effect of partial substitution of pumpkin flour for rice flour on the physical properties and sensory attributes of gluten-free muffin were investigated. Pumpkin flour was used to replace 10, 15 and 20% rice flour in a control gluten-free muffin formulation (without pumpkin flour). The partial substitution of pumpkin flour for rice flour did not affect moisture content of gluten-free muffins. However, the pumpkin flour substitution caused significant reduction in water activity of gluten-free muffins. Results on the volume, specific volume and height of all gluten-free muffins showed no significant effect with the increasing percentage of pumpkin flour substitution. However, pumpkin flour substitution significantly reduced the firmness of composite muffins, and improved its springiness. The colour of crumb progressively became darker as the level of pumpkin flour substitution increased. Moreover, the results also showed that the substitution of pumpkin flour caused an increase in yellowness (b*) value of crust and crumb of gluten-free muffin. Sensory evaluation indicated that all gluten-free muffins incorporated with pumpkin flour received similar score when compared to that of control.
    Matched MeSH terms: Diet, Gluten-Free
  2. Siti Nur Aishah Mohd Fauad, Satvinder Kaur, Siti Raihanah Shafie
    MyJurnal
    Introduction: The demand for commercial gluten-free food products are increasing due to rising prevalence of lifestyle-related diseases. The market growth is forecasted to increase in numbers. However, to date nutritional com- parison of gluten-free and gluten-containing food products is not done extensively in Malaysia. Therefore, this study aimed to investigate the nutritional composition and cost per 100 g between gluten-free and gluten-containing food products in selected grocery stores in Kuala Lumpur. Methods: A total of 106 food products comprising of gluten-free food products (n=41) and gluten-containing food products (n=65) were determined and compared for its nutritional composition and cost per 100 g. The products were obtained from 4 main grocery stores in Kuala Lumpur that supply gluten-free food products. The differences in nutritional composition and cost between both products were analysed by using independent samples t-test. Results: The results showed no difference in energy content between both prod- ucts. Across the food products, 15 % of gluten-free food products showed higher carbohydrate content compared to its counterparts. Protein content in gluten-free products was 63 % lower than gluten-containing products. Among all gluten-free food products included in this study, only lasagne sheet has lower content of dietary fibre compared to its counterparts. The cost for majority of gluten-free food products was significantly higher, which was two- to four- fold higher compared to gluten-containing products. Conclusion: This study indicated that gluten-free food products showed no nutritional advantage especially in its macronutrients, hence, avoidance of gluten for healthy population may not be beneficial and rather costly.
    Matched MeSH terms: Diet, Gluten-Free
  3. Ojukwu M, Ofoedu C, Seow EK, Easa AM
    J Sci Food Agric, 2021 Jul;101(9):3732-3741.
    PMID: 33301191 DOI: 10.1002/jsfa.11004
    BACKGROUND: Rice flour does not contain gluten and lacks cohesion and extensibility, which is responsible for the poor texture of rice noodles. Different technologies have been used to mitigate this challenge, including hydrothermal treatments of rice flour, direct addition of protein in noodles, use of additives such as hydrocolloids and alginates, and microbial transglutaminase (MTG). Recently, the inclusion of soy protein isolate (SPI), MTG, and glucono-δ-lactone (GDL) in the rice noodles system yielded rice noodles with improved texture and more compact microstructure, hence the need to optimize the addition of SPI, MTG, and GDL to make quality rice noodles.

    RESULTS: Numerical optimization showed that rice noodles prepared with SPI, 68.32 (g kg-1 of rice flour), MTG, 5.06 (g kg-1 of rice flour) and GDL, 5.0 (g kg-1 of rice flour) gave the best response variables; hardness (53.19 N), springiness (0.76), chewiness (20.28 J), tensile strength (60.35 kPa), and cooking time (5.15 min). The pH, sensory, and microstructure results showed that the optimized rice noodles had a more compact microstructure with fewer hollows, optimum pH for MTG action, and overall sensory panelists also showed the highest preference for the optimized formulation, compared to other samples selected from the numerical optimization and desirability tests.

    CONCLUSION: Optimization of the levels of SPI, MTG, and GDL yielded quality noodles with improved textural, mechanical, sensory, and microstructural properties. This was partly due to the favourable pH value of the optimized noodles that provided the most suitable conditions for MTG crosslinking and balanced electrostatic interaction of proteins. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Diet, Gluten-Free
  4. Cheng A
    Plant Sci, 2018 Apr;269:136-142.
    PMID: 29606211 DOI: 10.1016/j.plantsci.2018.01.018
    Genetic erosion of crops has been determined way back in the 1940s and accelerated some twenty years later by the inception of the Green Revolution. Claims that the revolution was a complete triumph remain specious, especially since the massive production boost in the global big three grain crops; wheat, maize, and rice that happened back then is unlikely to recur under current climate irregularities. Presently, one of the leading strategies for sustainable agriculture is by unlocking the genetic potential of underutilized crops. The primary focus has been on a suite of ancient cereals and pseudo-cereals which are riding on the gluten-free trend, including, among others, grain amaranth, buckwheat, quinoa, teff, and millets. Each of these crops has demonstrated tolerance to various stress factors such as drought and heat. Apart from being the centuries-old staple in their native homes, these crops have also been traditionally used as forage for livestock. This review summarizes what lies in the past and present for these underutilized cereals, particularly concerning their potential role and significance in a rapidly changing world, and provides compelling insights into how they could one day be on par with the current big three in feeding a booming population.
    Matched MeSH terms: Diet, Gluten-Free
  5. Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, Yong VC
    Front Microbiol, 2019;10:1136.
    PMID: 31244784 DOI: 10.3389/fmicb.2019.01136
    Irritable bowel syndrome (IBS) is a functional disorder which affects a large proportion of the population globally. The precise etiology of IBS is still unknown, although consensus understanding proposes IBS to be of multifactorial origin with yet undefined subtypes. Genetic and epigenetic factors, stress-related nervous and endocrine systems, immune dysregulation and the brain-gut axis seem to be contributing factors that predispose individuals to IBS. In addition to food hypersensitivity, toxins and adverse life events, chronic infections and dysbiotic gut microbiota have been suggested to trigger IBS symptoms in tandem with the predisposing factors. This review will summarize the pathophysiology of IBS and the role of gut microbiota in relation to IBS. Current methodologies for microbiome studies in IBS such as genome sequencing, metagenomics, culturomics and animal models will be discussed. The myriad of therapy options such as immunoglobulins (immune-based therapy), probiotics and prebiotics, dietary modifications including FODMAP restriction diet and gluten-free diet, as well as fecal transplantation will be reviewed. Finally this review will highlight future directions in IBS therapy research, including identification of new molecular targets, application of 3-D gut model, gut-on-a-chip and personalized therapy.
    Matched MeSH terms: Diet, Gluten-Free
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links