Current ecological risk assessment (ERA) schemes focus mainly on bioaccumulation and toxicity of pollutants in individual organisms. Ecological models are tools mainly used to assess ecological risks of pollutants to ecosystems, communities, and populations. Their main advantage is the relatively direct integration of the species sensitivity to organic pollutants, the fate and mechanism of action in the environment of toxicants, and life-history features of the individual organism of concern. To promote scientific consensus on ERA schemes, this review is intended to provide a guideline on short-term ERA involving dioxin chemicals and to identify key findings for exposure assessment based on policies of different agencies. It also presents possible adverse effects of dioxins on ecosystems, toxicity equivalence methodology, environmental fate and transport modeling, and development of stressor-response profiles for dioxin-like chemicals.
The contamination of aquatic environments with microplastics (MPs) has spurred an unprecedented interest among scientific communities to investigate their impacts on biota. Despite the rapid growth in the number of studies on the aquatic toxicology of MPs, controversy over the fate and biological impacts of MPs is increasingly growing mainly due to the absence of standardized laboratory bioassays. Given the complex features of MPs, such as the diversity of constituent polymers, additives, shapes and sizes, as well as continuous changes in the particle buoyancy as a result of fouling and defouling processes, it is necessary to modify conventional bioassay protocols before employing them for MP toxicity testings. Moreover, several considerations including quantification of chemicals on/in the MP particles, choice of test organisms, approaches for renewing the test solution, aggregation prevention, stock solution preparation, and units used to report MP concentration in the test solution should be taken into account. This critical review suggests some important strategies to help conduct environmentally-relevant MP bioassays.
It is undeniable that removal efficiency is the main factor in coagulation-flocculation (C-F) process for wastewater treatment. However, as far as environmental safety is concerned, the ecotoxicological aspect of the C-F process needs to be examined further. In this study, a systematic review was performed based on publications related to the toxicity research in C-F technology for wastewater treatment. Through a series of screening steps, available toxicity studies were categorized into four themes, namely acute toxicity, phytotoxicity, cytotoxicity, and genotoxicity, which comprised 48 articles. A compilation of the methodologies executed for each theme was also outlined. The findings show that conventional metallic coagulants (e.g., alum, iron chloride, and iron sulfate) were less toxic when tested on test species such as Daphnia magna (water flea), Lattuca sativa (lettuce), and animal cells compared to synthetic polymers. Natural coagulants such as chitosan or Moringa oleifera were less toxic compared to metallic coagulants; however, inconsistent results were observed. Moreover, an advanced C-F (electrocoagulation) as well as integration between C-F and Fenton, adsorption, and photocatalytic does not significantly change the toxicological profile of the system. It was found that diverse coagulants and flocculants, species sensitivity, complexity in toxicity testing, and dynamic environmental conditions were some key challenges faced in this field. Finally, it was expected that advances in technology, interdisciplinary collaboration, and a growing awareness of environmental sustainability will drive efforts to develop more effective and eco-friendly coagulants and flocculants, improve toxicity testing methodologies, and enhance the overall efficiency and safety of water and wastewater treatment processes.
Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.
Mud crab, one of the aquatic organisms found in estuary areas, has become a significant economic source of seafood for communities due to its delectable taste. However, they face the threat of heavy metal contamination, which may adversely affect their biological traits. This study explored the comparison of the mud crabs collected from Setiu Wetland as a reference site, while Kuala Sepetang is an area that contains a higher concentration of heavy metals than Setiu Wetlands. Heavy metal levels were quantified using inductively coupled plasma mass spectrometry (ICP-MS), while proteomes were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 1H nuclear magnetic resonance (NMR)-based metabolomics, respectively. Heavy metal contamination affects the proteome, metabolome, and putative molecular targets in mud crabs (Scylla olivacea), leading to oxidative stress. Mud crabs collected from the metal-polluted area of Kuala Sepetang in Perak had considerably elevated concentrations of nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), chromium (Cr), and cadmium (Cd) in comparison to the reference site of Setiu Wetlands in Terengganu. The proteome analysis revealed an upregulation of the stress-response protein Hsp70, which triggered superoxide dismutase (SOD) and increased arginine kinase expression (5.47 fold) in the muscle tissue, results in the alteration of metabolite regulation in the mud crab from Kuala Sepetang. Additionally, in the muscle tissues of mud crabs obtained from Kuala Sepetang, uncharacterized myosin-tail 1 domain proteins and sarcoplasmic calcium-binding proteins were downregulated. The metabolomic investigation identified changes in metabolites associated with energy metabolism and osmoregulation. Exploration of docking analysis suggests potential connections between methylarsonic acid and essential proteins in mud crabs. These findings suggest that the presence of heavy metals disrupts physiological processes and highlights potential molecular targets that warrant further investigation.
Waste engine oils are hazardous waste oils originating from the transportation sector and industrial heavy-duty machinery operations. Improper handling, disposal, and miscellaneous misuses cause significant air, soil, sediments, surface water, and groundwater pollution. Occupational exposure by prolonged and repeated contact poses direct or indirect health risks, resulting in short-term (acute) or long-term (chronic) toxicities. Soil pollution causes geotoxicity by disrupting the biocenosis and physicochemical properties of the soil, and phytotoxicity by impairing plant growth, physiology and metabolism. Surface water pollution impacts aquatic ecosystems and biodiversity. Air pollution from incineration causes the release of greenhouse gases creating global warming, noxious gases and particulate matter eliciting pulmonary disorders. The toxicity of waste engine oil is due to the total petroleum hydrocarbons (TPH) composition, including polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, xylene (BTEX), polychlorinated biphenyls (PCBs) congeners, organometallic compounds, and toxic chemical additives. The paper aims to provide a comprehensive overview of the ecotoxicological effects, human and animal health toxicology and exposure to waste engine oils. It highlights the properties and functions of engine oil and describes waste engine oil generation, disposal and recycling. It provides intensive evaluations and descriptions of the toxicokinetics, metabolism, routes of exposure and toxicosis in human and animal studies based on toxicological, epidemiological and experimental studies. It emphasises the preventive measures in occupational exposure and recommends risk-based remediation techniques to mitigate environmental pollution. The review will assist in understanding the potential risks of waste engine oil with significant consideration of the public health benefits and importance.
An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.
A new mathematical model has been developed that expresses the toxicities (EC₅₀ values) of a wide variety of ionic liquids (ILs) towards the freshwater flea Daphnia magna by means of a quantitative structure-activity relationship (QSAR). The data were analyzed using summed contributions from the cations, their alkyl substituents and anions. The model employed multiple linear regression analysis with polynomial model using the MATLAB software. The model predicted IL toxicities with R²=0.974 and standard error of estimate of 0.028. This model affords a practical, cost-effective and convenient alternative to experimental ecotoxicological assessment of many ILs.
Microplastics have been recognized as emerging pollutants with potential ecotoxicological impact. The contribution of washing machine use to microplastics emission at the household level is still not completely understood. This study aims to characterize microplastic emissions in laundry water from household washing machines from Greater Kuala Lumpur (Malaysia). Microplastics were found between 6.9E-3 and 0.183 g/m3 in laundry water at household level. Microplastic shapes of fiber and fragment consist of polyester, nylon, and acrylic with average length of 2258.59 μm and were also identified in these laundry water samples. Questionnaire survey findings demonstrated fabric properties and washing parameters both likely contribute to microplastic emissions in laundry water and, ultimately, wastewater treatment plant influent. The impact of fabric properties and washing parameter factors on microplastic emission in laundry water at the household level merits further investigation. The findings of this study demonstrated the potential of laundry water as a microplastic source at the household level within a developing country.
Ionic liquids (ILs) are class of solvent whose properties can be modified and tuned to meet industrial requirements. However, a high number of potentially available cations and anions leads to an even increasing members of newly-synthesized ionic liquids, adding to the complexity of understanding on their impact on aquatic organisms. Quantitative structure activity∖property relationship (QSAR∖QSPR) technique has been proven to be a useful method for toxicity prediction. In this work,σ-profile descriptors were used to build linear and non-linear QSAR models to predict the ecotoxicities of a wide variety of ILs towards bioluminescent bacterium Vibrio fischeri. Linear model was constructed using five descriptors resulting in high accuracy prediction of 0.906. The model performance and stability were ascertained using k-fold cross validation method. The selected descriptors set from the linear model was then used in multilayer perceptron (MLP) technique to develop the non-linear model, the accuracy of the model was further enhanced achieving high correlation coefficient with the lowest value being 0.961 with the highest mean square error of 0.157.
The concentrations of nine trace metals (Cr, Mn, Co, Ni, Cu, Zn, Rb, Cd, and Pb) were measured in different tissues of two pelagic and five demersal fish species collected from the Miri coast, Sarawak. The sequence of accumulation of trace metals in different tissues were: liver > gill > gonad > muscle. Zn (301.00 μg g-1) and Cd (0.10 μg g-1) was the maximum and minimum accumulated elements. According to the Hazard Index calculation, none of the elements will pose any adverse health effects to humans for both ingestion rates (normal and habitual fish consumers) proposed by USEPA, except for Pb and Cd in certain fish species. On the basis of the results, the level of elements in the edible muscle tissues of all the analyzed fish species from the Miri coast are below the maximum permissible limits of Malaysian and International seafood guideline values and safe for consumers.
The application of organophosphorus pesticides (OPPs) increased gradually because of the rise in global food demand that triggered the agriculture sector to increase the production, leading to OPP residues in the surface water. This study elucidated the presence of OPPs and estimated its ecological risk in the riverine ecosystem of the urbanised Linggi River, Negeri Sembilan, Malaysia. The OPP concentration in surface water was determined using solid-phase extraction method and high-performance liquid chromatography coupled with diode array detection. Further, the ecological risk was estimated by using the risk quotient (RQ) method. The three OPPs, i.e. chlorpyrifos, diazinon, and quinalphos were detected with mean concentrations of 0.0275 µg/L, 0.0328 µg/L, and 0.0362 µg/L, respectively. The OPPs were at high risk (in general and worst cases) under acute exposure. The estimated risk of diazinon was observed as medium for general (RQm = 0.5857) and high for worst cases (RQex = 4.4678). Notably, the estimated risk for chlorpyrifos was high for both general and worst cases (RQm = 1.9643 and RQex = 11.5643) towards the aquatic ecosystem of the Linggi River. Chronic risk of quinalphos remains unknown because of the absence of toxicity endpoints. This study presented clear knowledge regarding OPP contamination and possible risk for aquatic ecosystems. Hence, OPPs should be listed as one of the main priority contaminants in pesticide mitigation management in the future.
The genotoxic effects of increasing concentrations (below lethal concentration [LC₅₀]) of cadmium ([Cd] 0.1, 1 and 10 mg/L), copper ([Cu] 0.2, 2 and 20 mg/L) and zinc ([Zn] 0.5, 5 and 50 mg/L) on Chironomus kiiensis were evaluated using alkaline comet assay after exposure for 24 h. Both the tail moment and the olive tail moment showed significant differences between the control and different concentrations of Cd, Cu and Zn (Kruskal-Wallis, p < 0.05). The highest concentration of Cd was associated with higher DNA damage to C. kiiensis larvae compared with Cu and Zn. The potential genotoxicity of these metals to C. kiiensis was Cd > Cu > Zn.
An ideal model organism for neurotoxicology research should meet several characteristics, such as low cost and amenable for high throughput testing. Javanese medaka (JM) has been widely used in the ecotoxicological studies related to the marine and freshwater environment, but rarely utilized for biomedical research. Therefore, in this study, the applicability of using JM in the neurotoxicology research was assessed using biochemical comparison with an established model organism, the zebrafish. Identification of biochemical changes due to the neurotoxic effects of ethanol and endosulfan was assessed using Fourier Transform Infrared (FTIR) analysis. Treatment with ethanol affected the level of lipids, proteins, glycogens and nucleic acids in the brain of JM. Meanwhile, treatment with endosulfan showed alteration in the level of lipids and nucleic acids. For the zebrafish, exposure to ethanol affected the level of protein, fatty acid and amino acid, and exposure to endosulfan induced alteration in the fatty acids, amino acids, nucleic acids and protein in the brain of zebrafish. The sensitive response of the JM toward chemicals exposure proved that it was a valuable model for neurotoxicology research. More studies need to be conducted to further develop JM as an ideal model organism for neurotoxicology research.
The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
The distribution, sources, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediment and the edible tissue of short-neck clam (Paphia undulata) from mudflat ecosystem in the west coast of Malaysia were investigated. The concentrations of ∑16 PAHs varied from 347.05 to 6207.5 and 179.32 to 1657.5 ng g-1 in sediment and short-neck clam samples, respectively. The calculations of mean PEL quotients (mean-PELQs) showed that the ecological risk of PAHs in the sediment samples was low to moderate-high level, whereas the total health risk through ingestion and dermal contact was considerably high. The PAHs biota sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. The source apportionment of PAHs in sediment using positive matrix factorization model indicated that the highest contribution to the PAHs was from diesel emissions (30.38%) followed by oil and oil derivate and incomplete coal combustion (23.06%), vehicular emissions (16.43%), wood combustion (15.93%), and natural gas combustion (14.2%). A preliminary evaluation of human health risk using chronic daily intake, hazard index, benzo[a]pyrene-equivalent (BaPeq) concentration, and the incremental lifetime cancer risk indicated that PAHs in short-neck clam would induce potential carcinogenic effects in the consumers.
Soil columns were collected from a blueberry field, and insecticide solutions were allowed to leach through these columns. Insecticides from four different chemical classes were applied at two different rates: the concentration at which the insecticides wash off blueberries under rainfall conditions and the labeled field rate at which they are sprayed. The soil columns were divided into thirds; top, middle and bottom. Soil bioassays using Eisenia foetida Savigny, as an indicator species, were set up to determine the toxicity of the insecticides at a top, middle and bottom layer of the soil column. The mass of E. foetida was also measured after the bioassay experiment was completed. The concentrations at which insecticides wash-off of blueberries from rainfall were not lethal to E. foetida. In order to support mortality data, insecticide residues were quantified in the soil layers for each insecticide. Under field rate leaching conditions, carbaryl showed the high levels of toxicity in the top and middle layers of soil suggesting that it has the highest risk to organisms from leaching. This study will help blueberry growers make informed decisions about insecticide use, which can help minimize contamination of the environment.