Displaying all 13 publications

Abstract:
Sort:
  1. Al-Amshawee SKA, Yunus MYBM
    Environ Res, 2023 Feb 15;219:115115.
    PMID: 36574794 DOI: 10.1016/j.envres.2022.115115
    The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.
    Matched MeSH terms: Electrochemistry/instrumentation
  2. Daud SM, Kim BH, Ghasemi M, Daud WR
    Bioresour Technol, 2015 Nov;195:170-9.
    PMID: 26141668 DOI: 10.1016/j.biortech.2015.06.105
    Microbial electrochemical technologies (METs) are emerging green processes producing useful products from renewable sources without causing environmental pollution and treating wastes. The separator, an important part of METs that greatly affects the latter's performance, is commonly made of Nafion proton exchange membrane (PEM). However, many problems have been identified associated with the Nafion PEM such as high cost of membrane, significant oxygen and substrate crossovers, and transport of cations other than protons protons and biofouling. A variety of materials have been offered as alternative separators such as ion-exchange membranes, salt bridges, glass fibers, composite membranes and porous materials. It has been claimed that low cost porous materials perform better than PEM. These include J-cloth, nylon filter, glass fiber mat, non-woven cloth, earthen pot and ceramics that enable non-ion selective charge transfer. This paper provides an up-to-date review on porous separators and plots directions for future studies.
    Matched MeSH terms: Electrochemistry/instrumentation*
  3. Yap CY, Mohamed N
    Chemosphere, 2008 Oct;73(5):685-91.
    PMID: 18718637 DOI: 10.1016/j.chemosphere.2008.07.014
    An electrogenerative flow-through reactor with an activated reticulated vitreous carbon cathode was developed. The influence of palladium-tin activation of the cathode towards gold deposition was studied by cyclic voltammetry. The reactor proved to be efficient in recovering more than 99% of gold within 4 h of operation. The performance of the reactor was evaluated with initial gold concentrations of 10, 100 and 500 mg L-1 and various electrolyte flow rates. Gold recovery was found to be strongly dependent on electrolyte flow rate and initial gold concentration in the cyanide solution under the experimental conditions used.
    Matched MeSH terms: Electrochemistry/instrumentation
  4. Yap CY, Mohamed N
    Chemosphere, 2007 Apr;67(8):1502-10.
    PMID: 17296217
    Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.
    Matched MeSH terms: Electrochemistry/instrumentation
  5. Hajian R, Yusof NA, Faragi T, Shams N
    PLoS One, 2014;9(5):e96686.
    PMID: 24809346 DOI: 10.1371/journal.pone.0096686
    In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L-1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10-8 to 4.0×10-5 mol L-1 with the detection limit of 1.2×10-8 mol L-1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices.
    Matched MeSH terms: Electrochemistry/instrumentation*
  6. Kim BH, Lim SS, Daud WR, Gadd GM, Chang IS
    Bioresour Technol, 2015 Aug;190:395-401.
    PMID: 25976915 DOI: 10.1016/j.biortech.2015.04.084
    The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reducing bacteria acting as the cathode catalyst. These consume electrons available from the electrode to reduce the electron acceptors present, probably conserving energy for growth. Anaerobic bacteria reduce protons to hydrogen in microbial electrolysis cells (MECs). These aerobic and anaerobic bacterial activities resemble those catalyzing microbially-influenced corrosion (MIC). Sulfate-reducing bacteria and homoacetogens have been identified in MEC biocathodes. For sustainable operation, microbes in a biocathode should conserve energy during such electron-consuming reactions probably by similar mechanisms as those occurring in MIC. A novel hypothesis is proposed here which explains how energy can be conserved by microbes in MEC biocathodes.
    Matched MeSH terms: Electrochemistry/instrumentation*
  7. Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN
    Ultrason Sonochem, 2019 Nov;58:104649.
    PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649
    Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
    Matched MeSH terms: Electrochemistry/instrumentation*
  8. Saad B, Wai WT, Ali AS, Saleh MI
    Anal Sci, 2006 Jan;22(1):45-50.
    PMID: 16429771
    A flow injection analysis (FIA) method for the determination of four residual chlorine species, namely combined available chlorine (CAC), free available chlorine (FAC), total available chlorine (TAC) and chlorite (ClO2-) was developed using a flow-through triiodide-selective electrode as a detector. An important strategy of speciation studies utilized the kinetic discrimination of reactions between the CAC and FAC with Fe2+, which was applied to the speciation of FAC, CAC and TAC. The speciation of available chlorine species and chlorite (an oxychlorine species) was achieved by using the same set-up, but using flow streams of different pH. The effects of the pH of the carrier stream, the flow rate and the sample volume were studied. The method exhibited linearity from 2.8 x 10(-6) to 2.8 x 10(-4) M active chlorine (expressed as OCl-) with a detection limit of 1.4 x 10(-6) M. The selectivity of the method was studied by examining the minimum pH for the oxidation of iodide by other oxidants, and also by assessing the potentiometric selectivity coefficients. The proposed method was successfully applied to the determination of chlorine species in tap water, and disinfecting formulations where good agreement occurred between the proposed and standard methods were found.
    Matched MeSH terms: Electrochemistry/instrumentation
  9. Rahmani M, Ghafoorifard H, Afrang S, Ahmadi MT, Rahmani K, Ismail R
    IET Nanobiotechnol, 2019 Aug;13(6):584-592.
    PMID: 31432790 DOI: 10.1049/iet-nbt.2018.5288
    The response of trilayer graphene nanoribbon (TGN)-based ion-sensitive field-effect transistor (ISFET) to different pH solutions and adsorption effect on the sensing parameters are analytically studied in this research. The authors propose a TGN-based sensor to electrochemically detect pH. To this end, absorption effect on the sensing area in the form of carrier concentration, carrier velocity, and conductance variations are investigated. Also, the caused electrical response on TGN as a detection element is analytically proposed, in which significant current decrease of the sensor is observed after exposure to high pH values. In order to verify the accuracy of the model, it is compared with recent reports on pH sensors. The TGN-based pH sensor exposes higher current compared to that of carbon nanotube (CNT) counterpart for analogous ambient conditions. While, the comparative results demonstrate that the conductance of proposed model is lower than that of monolayer graphene-counterpart for equivalent pH values. The results confirm that the conductance of the sensor is decreased and Vg-min is obviously right-shifted by increasing value of pH. The authors demonstrate that although there is not the experimental evidence reported in the part of literature for TGN sensor, but the model can assist in comprehending experiments involving nanoscale pH sensors.
    Matched MeSH terms: Electrochemistry/instrumentation
  10. Mousavi S, Ibrahim S, Aroua MK
    Bioresour Technol, 2012 Dec;125:256-66.
    PMID: 23026342 DOI: 10.1016/j.biortech.2012.08.075
    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h.
    Matched MeSH terms: Electrochemistry/instrumentation*
  11. Thanalechumi P, Mohd Yusoff AR, Yusop Z
    J Environ Sci Health B, 2019;54(4):294-302.
    PMID: 30729855 DOI: 10.1080/03601234.2018.1561057
    A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04 M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= -0.851 and -0.938 V vs. Ag/AgCl (3.0 M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8 × 10-6 M with a detection limit of 1.53 × 10-8 M (S/N= 3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.
    Matched MeSH terms: Electrochemistry/instrumentation*
  12. Ghanim MH, Najimudin N, Ibrahim K, Abdullah MZ
    IET Nanobiotechnol, 2014 Jun;8(2):77-82.
    PMID: 25014078 DOI: 10.1049/iet-nbt.2012.0044
    Miniaturisation of microchip capillary electrophoresis (MCE) is becoming an increasingly important research topic, particularly in areas related to micro total analysis systems or lab on a chip. One of the important features associated with the miniaturised MCE system is the portable power supply unit. In this work, a very low electric field MCE utilising an amperometric detection scheme was designed for use in DNA separation. The device was fabricated from a glass/polydimethylsiloxane hybrid engraved microchannel with platinum electrodes sputtered onto a glass substrate. Measurement was based on a three-electrode arrangement, and separation was achieved using a very low electric field of 12 V/cm and sample volume of 1.5 µl. The device was tested using two commercial DNA markers of different base pair sizes. The results are in agreement with conventional electrophoresis, but with improved resolution. The sensitivity consistently higher than 100 nA, and the separation time approximately 45 min, making this microchip an ideal tool for DNA analysis.
    Matched MeSH terms: Electrochemistry/instrumentation
  13. Lai CW
    ScientificWorldJournal, 2014;2014:843587.
    PMID: 24782669 DOI: 10.1155/2014/843587
    Tungsten trioxide (WO₃) possesses a small band gap energy of 2.4-2.8 eV and is responsive to both ultraviolet and visible light irradiation including strong absorption of the solar spectrum and stable physicochemical properties. Thus, controlled growth of one-dimensional (1D) WO₃ nanotubular structures with desired length, diameter, and wall thickness has gained significant interest. In the present study, 1D WO₃ nanotubes were successfully synthesized via electrochemical anodization of tungsten (W) foil in an electrolyte composed of 1 M of sodium sulphate (Na₂SO₄) and ammonium fluoride (NH₄F). The influence of NH₄F content on the formation mechanism of anodic WO₃ nanotubular structure was investigated in detail. An optimization of fluoride ions played a critical role in controlling the chemical dissolution reaction in the interface of W/WO₃. Based on the results obtained, a minimum of 0.7 wt% of NH₄F content was required for completing transformation from W foil to WO₃ nanotubular structure with an average diameter of 85 nm and length of 250 nm within 15 min of anodization time. In this case, high aspect ratio of WO₃ nanotubular structure is preferred because larger active surface area will be provided for better photocatalytic and photoelectrochemical (PEC) reactions.
    Matched MeSH terms: Electrochemistry/instrumentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links