Displaying all 11 publications

Abstract:
Sort:
  1. Haziman AA, Ravinderan S, Thangavelu T, Thomas W
    Ir J Med Sci, 2019 May;188(2):389-395.
    PMID: 30014247 DOI: 10.1007/s11845-018-1867-1
    Colorectal cancer (CRC) is a malignancy whose incidence is increasing globally, and there is a gender difference in the increasing risk. Evidence from hormone replacement therapy studies points to a role for circulating estrogens in suppressing the development of CRC. Estrogen receptor-β has been identified as a tumor suppressor, but other actions of estrogen may also contribute to the difference in CRC incidence between men and women. The KCNQ1/KCNE3 potassium channel is regulated by estrogen in order to modulate chloride secretion during the menstrual cycle; the effect of estrogen on the colon is to promote fluid conservation during the implantation window. KCNQ1 is also a tumor suppressor in CRC, and its sustained expression has been linked to suppression of the Wnt/β-catenin signaling pathway that contributes to CRC tumor progression. KCNQ1 regulation may represent a link between the normal physiological actions of estrogen in the colon and the hormone's apparent tumor-suppressive effects in CRC development.
    Matched MeSH terms: Estrogens/metabolism*
  2. Bakrim S, El Omari N, Khan EJ, Khalid A, Abdalla AN, Chook JB, et al.
    Biomed Pharmacother, 2023 Dec 31;169:115783.
    PMID: 37944439 DOI: 10.1016/j.biopha.2023.115783
    Nuclear receptors (NRs) represent intracellular proteins that function as a signaling network of transcriptional factors to control genes in response to a variety of environmental, dietary, and hormonal stimulations or serve as orphan receptors lacking a recognized ligand. They also play an essential role in normal development, metabolism, cell growth, cell division, physiology, reproduction, and homeostasis and function as biological markers for tumor subclassification and as targets for hormone therapy. NRs, including steroid hormone receptors (SHRs), have been studied as tools to examine the fundamentals of transcriptional regulation within the development of mammals and human physiology, in addition to their links to disturbances. In this regard, it is widely recognized that aberrant NR signaling is responsible for the pathological growth of hormone-dependent tumors in response to SHRs dysregulation and consequently represents a potential therapeutic candidate in a range of diseases, as in the case of prostate cancer and breast cancer. On the other hand, phytosterols are a group of plant-derived compounds that act directly as ligands for NRs and have proven their efficacy in the management of diabetes, heart diseases, and cancers. However, these plants are not suggested in cases of hormone-dependent cancer since a certain group of plants contains molecules with a chemical structure similar to that of estrogens, which are known as phytoestrogens or estrogen-like compounds, such as lignans, coumestans, and isoflavones. Therefore, it remains an open and controversial debate regarding whether consuming a phytosterol-rich diet and adopting a vegetarian lifestyle like the Mediterranean diet may increase the risk of developing steroid hormone-dependent cancers by constitutively activating SHRs and thereby leading to tumor transformation. Overall, the purpose of this review is to better understand the relevant mechanistic pathways and explore epidemiological investigations in order to establish that phytosterols may contribute to the activation of NRs as cancer drivers in hormone-dependent cancers.
    Matched MeSH terms: Estrogens/metabolism
  3. Yvonne-Tee GB, Rasool AH, Halim AS, Wong AR, Rahman AR
    Clin. Hemorheol. Microcirc., 2008;38(2):119-33.
    PMID: 18198413
    Recent development had allowed non-invasive assessment of microvascular function in vivo; however, the method has not been fully optimized and standardized. In this study, we aimed to characterize the "effective" occlusion duration needed to elicit sufficient postocclusive hyperemia (PORH) responses in forearm skin using laser Doppler fluximetry (LDF), in subjects with differing age, gender and menstrual phases.
    Matched MeSH terms: Estrogens/metabolism
  4. Rufus P, Mohamed N, Shuid AN
    Curr Drug Targets, 2013 Dec;14(14):1689-93.
    PMID: 24354584
    Osteoporosis is a metabolic bone disorder that affects both men and women worldwide. It causes low bone mass and therefore increases bone susceptibility to fracture when bone undergoes a minor trauma. Lack of estrogen is the principal cause of osteoporosis. Estrogen, calcium, calcitonin, vitamin D and several antioxidants help in the prevention of osteoporosis. In order to effectively treat osteoporosis, there has been an extended research on the biological activities of traditional medicines since synthetic medicines possess several side effects that reduce their efficacy. Therefore, there is a need to develop new treatment alternatives for osteoporosis. This review centres on the scientific researches carried out on the evaluation of Chinese traditional medicines in the treatment of osteoporosis. Various plants like Achyranthes bidentata, Davallia formosana, polygonatum sibiricum, Cibotium barometz, Er-Zhi-Wan, Curculigo orchioides and a combined treatment of Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) with alendronate proved active in preventing post-menopausal osteoporosis.
    Matched MeSH terms: Estrogens/metabolism
  5. Ee YS, Lai LC, Reimann K, Lim PK
    Oncol Rep, 1999 6 22;6(4):843-6.
    PMID: 10373668
    Transforming growth factor-beta (TGF-beta) has been shown to inhibit the growth of mammary epithelial cells and may play a protective role in mammary carcinogenesis. In contrast, oestrogens promote the development of breast cancer. Oestrone sulphate (E1S) is a huge reservoir of active oestrogens in the breast being converted to the weak oestrogen, oestrone (E1), by oestrone sulphatase. E1 is reversibly converted by oestradiol-17beta hydroxysteroid dehydrogenase to the potent oestrogen, oestradiol (E2). The aim of this study was to assess the effect of the TGF-beta1 isoform on growth and oestrogen metabolism in the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines. The results showed that TGF-beta1 significantly inhibited cell growth and stimulated the conversion of E1S to E1 and E1 to E2 in the MCF-7 cell line. In the MDA-MB-231 cell line TGF-beta1 significantly stimulated cell growth and inhibited the interconversions between E1 and E2. In conclusion, the growth inhibitory effect of TGF-beta1 on the MCF-7 cell line would appear to confer a protective effect in breast cancer. However, its ability to increase the amount of E2 would increase the risk of breast cancer. Which of these effects predominates in vivo remains to be explored. The growth stimulatory effect of TGF-beta1 on the MDA-MB-231 cell line probably acts through a mechanism independent of the effect of TGF-beta1 on oestrogen concentrations since this cell line is hormone unresponsive.
    Matched MeSH terms: Estrogens/metabolism*
  6. Motaghed M, Al-Hassan FM, Hamid SS
    Int J Mol Med, 2014 Jan;33(1):8-16.
    PMID: 24270600 DOI: 10.3892/ijmm.2013.1563
    New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low Input Quick Amplification Labelling kit was used to generate cRNA in two-color microarray analysis. Samples with RIN >9.0 were used in this study. The universal human reference RNA was used as the common reference. The samples were labelled with cyanine-3 (cye-3) CTP dye and the universal human reference was labelled with cyanine-5 (cye-5) CTP dye. cRNA was purified with the RNeasy Plus Mini kit and quantified using a NanoDrop 2000c spectrophotometer. The arrays were scanned data analysed using Feature Extraction and GeneSpring software. Two-step qRT-PCR was selected to determine the relative gene expression using the High Capacity RNA-to-cDNA kit. The results from Gene Ontology (GO) analysis, indicated that 8 GO terms were related to biological processes (84%) and molecular functions (16%). A total of 577 entities showed >2-fold change in expression. Of these entities, 45.2% showed an upregulation and 54.7% showed a downregulation in expression. The interpretation of single experiment analysis (SEA) revealed that the cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and UDP glucuronosyltransferase 1 family, polypeptide A8 (UGT1A8) genes in the estrogen metabolic pathway were downregulated significantly by 43- and 11‑fold, respectively. The solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11 (SLC7A11) gene in the interferon pathway, reported to be involved in the development of chemoresistance, was downregulated by 15‑fold. The interferon-induced protein with tetratricopeptide repeats (IFIT)1, IFIT2, IFIT3, interferon, α-inducible protein (IFI)6 (also known as G1P3), interferon regulatory factor 9 (IRF9, ISGF3), 2'-5'-oligoadenylate synthetase 1, 40/46 kDa (OAS1) and signal transducer and activator of transcription 1 (STAT1) genes all showed changes in expression following treatment with thymoquinone. The caspase 10, apoptosis-related cysteine peptidase (CASP10) gene was activated and the protein tyrosine phosphatase, receptor type, R (PTPRR) and myocyte enhancer factor 2C (MEF2C) genes were upregulated in the classical MAPK and p38 MAPK pathways. These findings indicate that thymquinone targets specific genes in the estrogen metabolic and interferon pathways.
    Matched MeSH terms: Estrogens/metabolism*
  7. Su Wei Poh M, Voon Chen Yong P, Viseswaran N, Chia YY
    PLoS One, 2015;10(3):e0121382.
    PMID: 25816349 DOI: 10.1371/journal.pone.0121382
    Glabridin is an isoflavan from licorice root, which is a common component of herbal remedies used for treatment of menopausal symptoms. Past studies have shown that glabridin resulted in favorable outcome similar to 17β-estradiol (17β-E2), suggesting a possible role as an estrogen replacement therapy (ERT). This study aims to evaluate the estrogenic effect of glabridin in an in-vitro endometrial cell line -Ishikawa cells via alkaline phosphatase (ALP) assay and ER-α-SRC-1-co-activator assay. Its effect on cell proliferation was also evaluated using Thiazoyl blue tetrazolium bromide (MTT) assay. The results showed that glabridin activated the ER-α-SRC-1-co-activator complex and displayed a dose-dependent increase in estrogenic activity supporting its use as an ERT. However, glabridin also induced an increase in cell proliferation. When glabridin was treated together with 17β-E2, synergistic estrogenic effect was observed with a slight decrease in cell proliferation as compared to treatment by 17β-E2 alone. This suggest that the combination might be better suited for providing high estrogenic effects with lower incidences of endometrial cancer that is associated with 17β-E2.
    Matched MeSH terms: Estrogens/metabolism*
  8. Zakaria AA, Noor MHM, Ahmad H, Hassim HA, Mazlan M, Latip MQA
    Biomed Res Int, 2021;2021:9928199.
    PMID: 34568497 DOI: 10.1155/2021/9928199
    The Labisia pumila (LP) is a traditional plant that is locally known as Kacip Fatimah, Selusuh Fatimah, or Pokok Ringgang by the Malaysian indigenous people. It is believed to facilitate their childbirth, treating their postchild birth and menstrual irregularities. The water extract of LP has shown to contain bioactive compounds such as flavonoids, ascorbic acid, β-carotene, anthocyanin, and phenolic acid, which contribute extensive antioxidant, anti-inflammatory, antimicrobial, and antifungal. The LP ethanolic extract exhibits significant estrogenic effects on human endomentrial adenocarcinoma cell in estrogen-free basal medium and promoting an increase in secretion of alkaline phosphate. Water based has been used for many generations, and studies had reported that it could displace in binding the antibodies and increase the estradiol production making it similar to esterone and estradiol hormone. LP extract poses a potential and beneficial aspect in medical and cosmeceutical applications. This is mainly due to its phytoestrogen properties of the LP. However, there is a specific functionality in the application of LP extract, due to specific functional group in phytoconstituent of LP. Apart from that, the extraction solvent is important in preparing the LP extract as it poses some significant and mild side effects towards consuming the LP extracts. The current situation of women reproductive disease such as postmenopausal syndrome and polycystic ovary syndrome is increasing. Thus, it is important to find ways in alternative treatment for women reproductive disease that is less costly and low side effects. In conclusion, these studies proven that LP has the potential to be an alternative way in treating female reproductive related diseases such as in postmenopausal and polysystic ovarian syndrome women.
    Matched MeSH terms: Estrogens/metabolism
  9. Romieu I, Ferrari P, Chajès V, de Batlle J, Biessy C, Scoccianti C, et al.
    Int J Cancer, 2017 Jan 15;140(2):316-321.
    PMID: 27599758 DOI: 10.1002/ijc.30415
    Alcohol intake has been related to an increased risk of breast cancer (BC) while dietary fiber intake has been inversely associated to BC risk. A beneficial effect of fibers on ethanol carcinogenesis through their impact on estrogen levels is still controversial. We investigated the role of dietary fiber as a modifying factor of the association of alcohol and BC using data from the European Prospective Investigation into Cancer and Nutrition (EPIC). This study included 334,850 women aged 35-70 years at baseline enrolled in the ten countries of the EPIC study and followed up for 11.0 years on average. Information on fiber and alcohol intake at baseline and average lifetime alcohol intake were calculated from country-specific dietary and lifestyle questionnaires. Hazard ratios (HR) of developing invasive BC according to different levels of alcohol and fiber intake were computed. During 3,670,439 person-years, 11,576 incident BC cases were diagnosed. For subjects with low intake of fiber (<18.5 g/day), the risk of BC per 10 g/day of alcohol intake was 1.06 (1.03-1.08) while among subjects with high intake of fiber (>24.2 g/day) the risk of BC was 1.02 (0.99-1.05) (test for interaction p = 0.011). This modulating effect was stronger for fiber from vegetables. Our results suggest that fiber intake may modulate the positive association of alcohol intake and BC. Alcohol is well known to increase the risk for BC, while a fiber-rich diet has the opposite effect. Here the authors find a significant interaction between both lifestyle factors indicating that high fiber intake can ease the adverse effects associated with alcohol consumption. Consequently, women with high alcohol intake and low fiber intake (<18.5 g/day) had the highest risk for BC. Specific benefits were associated with fibers from vegetable, warranting further investigations into specific fiber sources and their mechanistic interactions with alcohol-induced BC risk.
    Matched MeSH terms: Estrogens/metabolism
  10. Wong SF, Reimann K, Lai LC
    Pathology, 2001 Nov;33(4):454-9.
    PMID: 11827412
    Oestrogens play an important role in the development of breast cancer. Oestrone sulphate (E1S) acts as a huge reservoir of oestrogens in the breast and is converted to oestrone (E1) by oestrone sulphatase (E1STS). E1 is then reversibly converted to the potent oestrogen, oestradiol (E2) by oestradiol-17beta hydroxysteroid dehydrogenase (E2DH). The aim of this study was to assess the effects of transforming growth factor-beta1 (TGFbeta1), insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II) on cell growth, E1STS and E2DH activities in the MCF-7 and MDA-MB-231 human breast cancer cell lines. TGFbeta1, IGF-I and IGF-II alone or in combination inhibited cell growth of both cell lines but no additive or synergistic effects were observed. The treatments significantly stimulated E1STS activity in the MCF-7 cell line, except for TGFbeta1 alone and TGFbeta1 and IGF-I in combination, where no effects were seen. Only TGFbeta1 and IGF-II acted synergistically to stimulate E1STS activity in the MCF-7 cells. There was no significant effect on E1STS activity in the MDA-MB-231 cells with any of the treatments. In the MCF-7 cells, TGFbeta1 and IGF-I, IGF-I and IGF-II, and TGFbeta1, IGF-I and IGF-II acted synergistically to stimulate the reductive E2DH activity, while only TGFbeta1, IGF-I and IGF-II synergistically stimulated the oxidative E2DH activity. There were no additive or synergistic effects on both oxidative and reductive E2DH activities in the MDA-MB-231 cells. In conclusion, TGFbeta1, IGF-I and IGF-II may have effects on oestrogen metabolism, especially in the MCF-7 cell line where they stimulated the conversion of E1S to E1 and E1 to E2 and, thus, may have roles to play in the development of breast cancer.
    Matched MeSH terms: Estrogens/metabolism*
  11. Ogawa S, Parhar IS
    Int J Mol Sci, 2020 Apr 15;21(8).
    PMID: 32326396 DOI: 10.3390/ijms21082724
    Gonadotropin-releasing hormone (GnRH) is essential for the initiation and maintenance of reproductive functions in vertebrates. To date, three distinct paralogue lineages, GnRH1, GnRH2, and GnRH3, have been identified with different functions and regulatory mechanisms. Among them, hypothalamic GnRH1 neurons are classically known as the hypophysiotropic form that is regulated by estrogen feedback. However, the mechanism of action underlying the estrogen-dependent regulation of GnRH1 has been debated, mainly due to the coexpression of low levels of estrogen receptor (ER) genes. In addition, the role of sex steroids in the modulation of GnRH2 and GnRH3 neurons has not been fully elucidated. Using single-cell real-time PCR, we revealed the expression of genes for estrogen, androgen, glucocorticoid, thyroid, and xenobiotic receptors in GnRH1, GnRH2, and GnRH3 neurons in the male Nile tilapia Oreochromis niloticus. We further quantified expression levels of estrogen receptor genes (ERα, ERβ, and ERγ) in three GnRH neuron types in male tilapia of two different social statuses (dominant and subordinate) at the single cell level. In dominant males, GnRH1 mRNA levels were positively proportional to ERγ mRNA levels, while in subordinate males, GnRH2 mRNA levels were positively proportional to ERβ mRNA levels. These results indicate that variations in the expression of nuclear receptors (and possibly steroid sensitivities) among individual GnRH cells may facilitate different physiological processes, such as the promotion of reproductive activities through GnRH1 neurons, and the inhibition of feeding and sexual behaviors through GnRH2 neurons.
    Matched MeSH terms: Estrogens/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links