The Yb(III) atom in the title complex, [Yb(C27H24Cl3N4O3)] [systematic name: (2,2',2''-{(nitrilo)-tris-[ethane-2,1-di-yl(nitrilo)-methylyl-idene]}tris-(4-chloro-phenolato)ytterbium(III)], is coordinated by a trinegative, hepta-dentate ligand and exists within an N4O3 donor set, which defines a capped octa-hedral geometry whereby the amine N atom caps the triangular face defined by the three imine N atoms. The packing features supra-molecular layers that stack along the a axis, sustained by a combination of aryl-C-H⋯O, imine-C-H⋯O, methyl-ene-C-H⋯π(ar-yl) and end-on C-Cl⋯π(ar-yl) inter-actions. A Hirshfeld surface analysis points to the major contributions of C⋯H/ H⋯C and Cl⋯H/H⋯Cl inter-actions (along with H⋯H) to the overall surface but the Cl⋯H contacts are at distances greater than the sum of their van der Waals radii.
An all-solid-state potentiometric electrode system for aluminium ion determination was developed with a new aluminium ion sensor as the working electrode based on a new ionophore for aluminium ion, 1,1'-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea] (ACH). The reference electrode was a potassium ion sensor, which acts as a pseudo-reference. Both electrodes were made from Ag/AgCl screen-print electrodes fabricated from a non-plasticized and photocurable poly(n-butyl acrylate) membrane that contained various other membrane components. The pseudo-reference potential based on the potassium ion sensor was fixed in 0.050 M KNO3, and such concentration of K+ ion did not interfere with the measurement of the Al3+ ion using the aluminium sensor. With such a pseudo-reference and in the presence of 0.050 M KNO3 as a background medium, the aluminium sensor measured changes of aluminium ion concentrations linearly from 10-6 to 10-2 M Al3+ ion with a Nernstian response of 17.70 ± 0.13 mV/decade. A low detection limit of 2.45 × 10-7 M was achieved with this all-solid-state potentiometric system. The aluminium sensor was insensitive to pH effects from 2.0 to 8.0 with a response time of less than 50 s. Under optimum conditions, a lifetime of 49 days was achieved with good sensor selectivity, reversibility, repeatability, and reproducibility. The all-solid-state electrode system was applied to analyze the Al3+ ion content of water samples from a water treatment plant. Compared with the conventional potentiometric detection system for aluminium ions, the new all-solid-state aluminium ion sensor incorporating a pseudo-reference from the potassium sensor demonstrated similar analytical performance. It thus provided a convenient means of aluminium content analysis in water treatment plants.
The present study was carried out to characterize red fruit (Pandanus conoideus Lam) oil (RFO) in term of FTIR spectra, fatty acid composition, and volatile compounds. FTIR spectrum of RFO was slightly
different from other common vegetable oils and animal fats, in which in the frequency range of 1750 – 1700 cm-1, RFO appear two bands. The main fatty acid composition of RFO is oleic acid accounting for 68.80% followed by linoleic acid with the concentration of 8.49%. The main volatile compounds of RFO as determined using gas chromatography coupled with mass spectrometry (GC-MS) and headspace analyser are 1,3-dimethylbenzene (27.46%), N-glycyl- L-alanine (17.36%), trichloromethane (15.22%), and ethane (11.43%).
A series of amorphous carbon nitride (a-CNx) thin films were deposited on silicon (111) substrates using a home-built
radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) system. The a-CNx thin films were deposited
from a mixture of a fixed flow-rate of ethane (C2
H6
, 20 sccm) and nitrogen (N2
, 47 sccm) gases with varying RF power. A
higher ratio of C to H (C to H ratio is 1:3) atoms in C2
H6
as compared to the ratio in methane (CH4
) gas (C to H ratio is
1:4) is expected to produce an interesting effect to the film properties as humidity sensor. The characterization techniques
used to determine the morphology and chemical bonding of the thin films are field emission scanning electron microscopy
(FESEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The variation of morphology and the existence
of nitrile band in these samples are correlated with the electrical properties of a-CNx thin films. Using humidity sensing
system, the sensing performance of the samples was examined. It was found that the response of sensors towards the
percentage of relative humidity (% RH) change is good resistive responses and good repeatability. The sensitivity of the
prepared a-CNx thin films is significantly higher (up to 79%) as compared to previous studies using CH4
or acetylene as
precursor gas. Based on these results, the properties and the sensitivity of the a-CNx thin films towards humidity can be
tailored by using an appropriate precursor gases and deposition parameters.
A novel nitrogen-sulphur macrocyclic Schiff base, 4,11,20,27-tetrathioxo3,12,19,28-tetrathia-5,6,9,10,21,22,25,26-octaazatricyclo[28.2.2.214,17]hexatriaconta 1(33),6,8,14(36),15,17(35),22,24,30(34),31-decaene-2,13,18,29-tetraone (TGSB) derived from terephthaloyl-bis-dithiocarbazate (TDTC) and glyoxal (ethane-1,2-dione) is synthesised via condensation. Metal complexes are formed by reacting the Schiff base with various metal salts such as Ru(III), Mo(V), Cd(II), Zn(II) and Cu(II). The complexes are expected to have a general formula of M2L or M3L with a square planar or square pyramidal geometry. These compounds were characterised by various physicochemical and spectroscopic techniques. From the data, it is concluded that the azomethine nitrogen atom and the thiolate sulphur atom from the ligand are bonded to the metal ion. In the IR spectra of the complexes, the presence of the C=N band in the region of 1600 cm-1 indicates the successful formation of the Schiff base. The structures of the Schiff base and metal complexes are confirmed via FT-IR, GC-MS and NMR spectroscopic analysis. The magnetic susceptibility measurements, electronic spectral data and molar conductivity analysis support the desired geometry of the complexes. The Schiff base and its metal complexes are evaluated for their biological activities against the invasive human bladder carcinoma cell line (EJ-28) and the minimuminvasive human bladder carcinoma cell line (RT-112). The RuTGSB and CdTGSB complexes showed selective activity against RT-112.